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Summary

This report presents a survey of the traffic management issues in the design and implementation of satellite

Asynchronous Transfer Mode (ATM) networks. The report focuses on the efficient transport of TCP traffic over

satellite ATM. First, a reference satellite ATM network architecture is presented along with an overview of the

service categories available in ATM networks. A delay model for satellite networks and the major components of

delay and delay variation are described. A survey of design options for TCP over UBR, GFR. and ABR services in

ATM is presented. The main locus is on traffic management issues. Several recommendations on the design options

for efficiently carrying data services over satellite ATM networks are presented. Most of the results are based on

experiments performed on GEO latencics. Some results tor LEO and ME() latencies are also provided.

1. Introduction

ATM technology is expected to provide quality of service-based networks that support voice, video, and data
applications. ATM was originally designed for fiber-based terrestrial networks that exhibit low latencies and low

error rates. With the widespread availability of multimedia technology, and an increasing demand for electronic

connectivity across the world, satellite networks play an indispensable role in the deployment of global networks.

Ka-band satellites using the gigahertz frequency spectrum reach user terminals across most of the populated world.

As a result, ATM-based satellite networks effectively provide real time as well as non-real-time communications
services to remote areas.

Satellite communications technology offers a number of advantages over traditional terrestrial point-to-point

networks [AKYL97]. These include

• wide geographic coverage including interconnection ot" "ATM islands"

• multipoint-to-multipoint communications facilitated by the broadcasting ability of some satellite systems

• bandwidth on demand or Demand Assignment Multiple Access (DAMA) capabilities

• an alternative to fiber optic networks for disaster recovery options

However. satellite systems have several inherent constraints. The resources of the satellite communication net-

work, especially the satellite and the Earth station are expensive and typically have low redundancy: these must be

robust and used efficiently. Also, satellite systems can use a Time Division Multiplexed (TDM) physical layer,

where individual Earth stations can transmit frames during fixed time slots. In this case, the cell-based ATM layer
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mustbemappedontotheframe-basedsatellitelayer.Sinceseveralterminalsmaybecompetingforthesametime
slot,efficientbandwidthallocationstrategiesforDemandAssignmentMultipleAccess(DAMA)mustbeused.

CurrentandproposedsatellitecommunicationsnetworksuselowEarthorbit(LEO)constellationsaswellas
geosynchronous(GEO)satellitesystems.GEOsatelliteshaveahighpropagationdelaybutafewsatellitesare
enoughtoprovideconnectivityacrosstheglobe.LEOsatelliteshavelowerpropagationdelaysduetotheirlower

altitudes, but many satellites are needed to provide global service. While LEO systems have lower propagation

delay, they exhibit higher delay variation due to connection handovers and other factors related to orbital dynamics

[IQTC97]. The effects of the propagation delays for LEO systems are further intensified by the buffering delays that

could be of the order of the propagation delays especially for best effort TCP/IP traffic. The large delays in GEO's,

and delay variations in LEO's, affect both real-time and non-real-time applications. Many real-time applications are

sensitive to the large delay experienced in GEO systems, as well as to the delay variation experienced in LEO sys-

tems. In an acknowledgment and timeout-based congestion control mechanism (like TCP), perlormance is inher-

ently related to the delay-bandwidth product of the connection. Moreover, TCP RTT measurements are sensitive to

delay variations that may cause false timeouts and retransmissions. As a result, the congestion control issues for

broadband satellite networks are somewhat different from those of low latency terrestrial networks. Both inter-

operability, as well as performance issues between satellite and terrestrial networks must be addressed before data,
voice, and video services can be provided over a satellite ATM network.

This report provides a survey of the issues involved in designing satellite ATM networks for transporting data

traffic, especially TCP/IP traffic. The report first provides a brief introduction to the satellite ATM architectural

issues, and presents a reference architecture tot satellite ATM networks. The report then discusses the implementa-

tion and perlbrmance of TCP/IP over the UBR, GFR. and ABR service categories. The lbcus of this report is to pre-
sent the issues involved and make recommendations in the design of satellite ATM networks.

2. Architectural Issues

In this section we overview the basic architectural issues tbr ATM over satellite, and present the QoS frame-

work for ATM networks. The reference architecture presented here is taken from [TIATSB91 I.

2.1. Satellite ATM system categories

Satellite ATM systems can be categorized as the traditional bent pipe architectures and onboard-processing

architectures. The ground segment consists of ATM networks that may be further connected to other legacy net-

works. The network control center (NCC) performs various management and resource allocation functions for the

satellite media. Inter-satellite links (ISL) in the space segment provide seamless global connectivity to the satellite
constellation. The network allows the transmission of ATM cells over satellite, multiplexes and demultiplexes ATM

cell streams from uplinks and downlinks, and maintains the QoS objectives of the various connection types. The
satellite ATM network also includes a satellite ATM interlace device connecting the ATM network to the satellite

system. The interface device transports ATM cells over the frame-based satellite network, and demultiplexes ATM

cells from the satellite frames. The device typically uses a DAMA technique to obtain media access to the satellite

physical layer. The interface unit is also responsible for forward error correction techniques to reduce the error rates

of the satellite link. The unit must maintain ATM quality of service parameters at the entrance to the satellite net-

work. As a result, it translates the ATM QoS requirements into corresponding requirements for the satellite network.

This interface is thus responsible for resource allocation, error control, and traffic control.

About 53 percent of the planned Ka-band satellite networks propose to use onboard ATM-like fast packet

switching [PONZ97]. In a simple satellite model without onboard processing or switching, minimal onboard buff-

ering is required. However+ if onboard processing is pertbrmed, then onboard buffering is needed to achieve the

multiplexing gains provided by ATM. Onboard processing can be used for resource allocation and media access

control (MAC). MAC options include TDMA, FDMA, and CDMA and can use contention-based, reservation-based,

or fixed media access control. DAMA can be used with any of the MAC options. If onboard processing is not per-

tbrmed, DAMA must be done by the NCC. Onboard DAMA decreases the response time of the media access policy

by half because [ink access requests need not travel to the NCC on the ground any more. In addition to media access
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control,ABRexplicitrateallocationorEFCIcontrol,andUBR/GFRbuffermanagement can also be performed

onboard the satellite. Onboard switching may be used for efficient use of the network by implementing adaptive

routing/switching algorithms. Tradeoffs must be made with respect to the complexity, power and weight require-

ments for providing onboard buffering, switching and processing features to the satellite network. In addition, on-

board buffering and switching will introduce some additional delays within the space segment of the network. For

fast packet or cell switched satellite networks, the switching delay is negligible compared to the propagation delay,

but the buffering delay can be significant. Buffering also results in delay variations due to the bursty nature of ATM
traffic.

[TIATSB91] describes three ATM network architectures for bent pipe satellites and three ATM network archi-

tectures tbr satellites with onboard ATM switches. These architectures differ t¥om one another in terms of required

level of mobility, supported data rates, terrestrial interfaces and onboard processing and switching requirements.

One of the architectures (and its protocol stack) described in [TIATSB91] is shown in figures 1 and 2.

The bent pipe architectures are

(i) SATATM 1.1, fixed ATM network access and network interconnect which provides ATM network access to
fixed terminals and interconnects fixed ATM networks

(ii) SATATM 1.2, mobile ATM network access which provides ATM network access to mobile terminals

(iii) SATATM 1.3, mobile ATM network interconnect which provides connections between a mobile platform and

a fixed network or between two mobile plattbrms

" .... SI.1. .......""
SI.I.C "\

I 1.A S j

/

/_'_ SI.I.B ...... _...... _- SI.1.A ........... f

/ _ S,.1.B, "_SI,_ / / I /'_... _\

_TM 1.1 Q)/ _Sl._/

Figure I.---SATATM 1.1, fixed ATM network access and network interconnect.
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Figure 2.--SATATM 1.1, protocol reference model for network access.

Onboard processing architectures are

(i) SATATM 2.1. ATM network access which provides ATM network access to terminals

(ii) SATATM 2.2, ATM network interconnect which provides high speed links to interconnect two ATM networks

(iii) SATATM 2.3, full mesh ATM in which several satellites form an ATM network in the sky and provide user
access and network interconnection services

The document also addresses mobility, handover, and routing issues for LEO. ME(), and GEO architectures.

2.2. Service categories in ATM networks

ATM networks carry traffic from multiple service categories, and support QoS requirements tor each service

category. The ATM-Forum Traffic Management Specification 4.0 [TM4096] defines five service categories for

ATM networks. Each service category is defined using a traffic contract and a set of QoS parameters.

The traffic contract is a set of parameters that specify the characteristics of the source traffic. This defines the

requirements for compliant cells of the connection. The QoS parameters are negotiated by the source with the net-

work, and are used to define the expected quality of service provided by the network. For each service category, the

network guarantees the negotiated QoS parameters if the end system complies with the negotiated traffic contract.

For noncompliant traffic, the network need not maintain the QoS objective.

The Constant Bit Rate (CBR) service category is defined tbr traffic that requires a constant amount of band-

width, specified by a Peak Cell Rate (PCR), to be continuously available. The network guarantees that all cells

emitted by the source that conform to this PCR will be transferred by the network with minimal cell loss, and within

fixed bounds of cell delay and delay variation. The real-time Variable Bit Rate (VBR-rt) class is characterized by

PCR, Sustained Cell Rate (SCR), and a Maximum Burst Size (MBS) in cells that control the bursty nature of VBR

traffic. The network attempts to deliver cells within fixed bounds of cell delay and delay variation. Non-real-time

Variab.le Bit Rate (VBR-nrt) sources are also specified by PCR, SCR. and MBS, but are less sensitive to delay and

delay variation than the real-time sources. The network does not specify any delay and delay variation parameters
fi)r the VBR-nrt service.

The Available Bit Rate (ABR) service category is specified by a PCR and Minimum Cell Rate (MCR) which is

guaranteed by the network. The bandwidth allocated by the network to an ABR connection may vary during the life
of a connection, but may not be less than MCR. ABR connections use a rate-based closed-loop feedback-control

mechanism for congestion control. The network tries to maintain a low Cell Loss Ratio by changing the allowed

cell rates (ACR) at which a source can send. The Unspecified Bit Rate (UBR) class is intended for best effort appli-

cations, and this category does not support any service guarantees. UBR has no built in congestion control
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mechanisms.TheUBRservicemanagescongestionbyefficientbuffermanagementpoliciesintheswitch.A new
servicecalledGuaranteedFrameRate(GFR)isbeingintroducedattheATMForumandtheITU-T.GFRisbased
onUBR,butguaranteesaminimumratetoconnections.TheservicealsorecognizesAAL5frames,andperforms
frameleveldroppingasopposedtocellleveldropping.

Inaddition,theITU-ThasspecifiedfourQoSclassestobeusedtodelivernetwork-basedQoS[I35696].It is
imperativethatabroadbandsatellitenetworkbeabletosupportthevariousQoSservicesspecifiedbythestandards.
Mostimportantly,thenetworkshouldbeabletosupportTCWIP-baseddataapplicationsthatconstitutethebulkof
Internettraffic.

Mostoftheparametersspecifiedinthestandardsarerelevantonlytoterrestrialnetworks.Thesevalueshaveto
bere-evaluatedforsatelliteATMnetworks.Forexample,theITU-Tspecifiesamaximumcelltransferdelayof
400msfortheITUClass1stringentservice[I35696].ThisclassisexpectedtocarryCBRtraffictbrreal-timevoice
communicationsoverATM.However,the400msmaximumdelayneedstobereviewedtoensurethatit properly
accountsforthepropagationdelaysingeosynchronoussatellitenetworks.Thepeak-to-peakcelldelayvariationof
QoSClassI isalsospecifiedtobeamaximumof3msbytheITU-T[I35696].Thisvaluemaybetoostringentfor
manysatellitesystems.Asaresult,theQoSparametersareundercarefulconsiderationbyITU-4B[IQTC97].Inthis
context,theITU-4BpreliminarydraftrecommendationsontransmissionofATMtrafficviasatellitearein theproc-
essofdevelopment.

3. Satellite Channel Error Characteristics

For a satellite channel, there are two general perfbrmance requirements:

( 1 ) High throughput: To obtain good throughput, there is a need to minimize data retransmission. This is

especially important if go-back-N window-based flow control is used. When the propagation delay is
large, data that is transmitted alter the missing segment and before the retransmission request reaches the

source may be lost.
(2) Low cost: To reduce the cost of ground station, the power required to transmit data should be minimized

while maintaining required signal-to-noise ratio at the receiver.

Inherently, satellite channels produce random single-bit errors in the data being transmitted. The Bit Error Rate

(BER) depends on the signal-to-noise ratio at the receiver. Thus for an acceptable level of error rate, a certain mini-
mum signal-to-noise ratio must be ensured at the receiver and hence maintained at the transmitter. Forward Error
Correction (FEC) techniques provide a solution that satisfies both these requirements. These techniques introduce

some redundancy in the transmitted data. When the receiver gets the corrupted data, it uses this redundancy to
decide if received data is corrupted and to find out what must have been the original data. FEC codes can broadly be
classified as block codes and tree codes. Block codes are "'memory-less" codes that map "k" input binary signals to

"'n'" output binary signals, where "n" > "k" for redundancy. Tree codes, on the other hand, use "'memory" by remem-

bering "v" input signals immediately preceding the target block of "k" input signals. These "'v'" + "k'" input binary
signals are used in the generation of "n" output binary signals corresponding to "k" input signals. Convolutional

coding, a subset of tree codes, and Viterbi decoding are the most popular FEC techniques used on satellite channels
[CLAR81 ]. Thus, when the transmitted signal is FEC coded, the receiver during decoding is able to decide in most

cases if the signal has been corrupted during transmission and in some cases the receiver is able to correct the cor-
rupted signal. Thus, the receiver makes requests for data retransmission only when it detects loss of data or when

data is so corrupted that the receiver cannot correct it. Since the receiver can tolerate a certain level of errors in the
received data, the required signal-to-noise ratio at the receiver reduces. Thus, less power is required for
transmission.

The reduction in required signal-to-noise ratio at the transmitter to maintain an acceptable BER can also be
viewed as the reduction in the satellite channel's BER for a given signal-to-noise ratio at the transmitter. Thus, use of

FEC coding reduces the BER of the satellite channel for a given signal-to-noise ratio at the receiver.
However, whenever the receiver commits a mistake in detecting corrupted data or in deciding what must have

been the original data before corruption, many successive bits are affected; that is, a "burst" of errors occurs. Thus,

the original random error nature of satellite channels gets transformed to one with bursty errors. This change from
random error environment to bursty error environment for satellite channels profoundly affects the operation of
ATM and AAL protocols and their transport over SDH/PDH frames as described in the next 3 subsections.
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3.1. Impact of bursty errors on the ATM layer

The most important impact of bursty errors on the functioning of the ATM layer is the dramatic increase in the
Cell Loss Ratio (CLR). The 8-bit ATM Header Error Control (HEC) field in the ATM cell header can correct only

single bit errors. However. in a bursty error environment, if a burst of errors hits a cell header, it is likely that it will
corrupt more than a single bit. Thus, the HEC field becomes ineffective in front of bursty errors and the CLR rises

dramatically.
It has been shown by a simplified analysis and confirmed by actual experiments that for random errors, CLR is

proportional to square of bit error rate (BER) and for bursty errors, CLR is linearly related to BER. Now BER is less

than 1 in magnitude. Hence, for the same BER, in case of bursty errors, CLR value (proportional to BER) is orders
of magnitude higher than CLR value for random errors (proportional to square of BER). Also, for bursty errors,

CLR is linearly related to BER, the reduction in CLR with reduction in BER is not as steep as in the case of chan-
nels with random errors (where CLR is proportional to square of BER). Finally, for:bursty errors, the CLR increases

with decreasing average burst length. This is because for the same number of total bit errors, shorter error bursts
mean that a larger number of cells are affected [AGNE95][RAMS95 I.

Another negligible but interesting problem is that of misinserted cells. Since 8 HEC bits in the ATM cell header
are determined by 32 other bits in the header, there are only 232 valid ATM header patterns out of 24o possibilities
(for 40 ATM header bits). Thus for a cell header, hit by a burst of errors, there is a 232/240 chance that the corrupted

header is a valid one. Moreover, if the corrupted header differs from a valid header by only a single bit. HEC will
"'correct" that bit and accept the header as a valid one. Thus. for every valid header bit pattern (out of 2 32 possibili-

ties) there are 40 other patterns (obtained by inverting one bit out of 40) that can be corrected. The possibility that
our "'error burst" hit header is one of these patterns is 40x232/24°. Thus, overall there is a 41×232/240 (= 41/256 = I/6)

chance that a random bit pattern, emerging after an ATM cell header is hit by a burst of errors, will be taken as a
valid header. In that case a cell, that should have been discarded, is accepted as a valid cell. Such a cell is called a

"'misinserted'" cell. Also, the probability Pmi that a cell will be misinserted in a channel with bursty errors is around
I/6 of the cell loss ratio on the channel; that is.

P,,. _ (1/6) × CLR

Since CLR can be written as a constant times BER, the misinserted cell probability is also a constant times
BER: that is.

P,,,i = k × BER

The cell insertion rate, C,, the rate at which cells are inserted in a connection, is obtained by multiplying this

probability by the number of ATM cells transmitted per second (r). divided by total possible number of ATM con-
nections (2"4); that is.

Cir = (k x BER × r)/224

Because of a large number of total possible ATM connections, the cell insertion rate is negligible (about one

inserted cell per month) even for high BER (=10 -4) and data rates (=34 Mbps) [RAMS95].

3.2 Impact of bursty errors on AAL protocols

The cyclic error detection codes employed by AAL protocols types 1, 3/4. and 5 are susceptible to error bursts

in the same way as ATM HEC code. A burst of errors that passes undetected through these codes may cause failure
of protocol's mechanism or corruption in data. AAL type l's segmentation and reassembly (SAR) header consists of

4 bits of Sequence Number (SN) protected by a 3 bit CRC code and a single bit parity check. There is a 15/255
chance that an error burst on the header will not be detected by the CRC code and parity check. Such an undetected

error at the SAR layer may lead to synchronization failure at the receiver's convergence sublayer. AAL 3/4 uses a
10-bit CRC at the SAR level. Here, bursty errors and scrambling on the satellite channel increases the probability of

undetected error. However, full byte interleaving of ATM cell payload can reduce undetected error rate by several
orders of magnitude by distributing the burst error into two AAL 3/4 payloads. The price to be paid for distributing

burst error into two AAL payloads is doubling of the detected error rate and AAL 3/4 payload discard rate. AAL
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type5usesa32-bitCRCcodethatdetectsallbursterrorsoflength32orless.Forlongerbursts,theerrordetection
capabilityofthiscodeismuchstrongerthanthatofAAL3/4CRC.Moreover+it usesalengthcheckfield,which
findsoutlossorgainofcellsinanAAL5payload,evenwhenCRCcodefailstodetectit.Hence,it isunlikelythat
abursterrorinAAL5payloadwouldgoundetected[CHIT94].

3.3. Impact of bursty errors on physical layer protocols

[CHIT94] analyzes the effect of bursty errors on functioning of DS-3 signal (44.736 Mbps) and Physical Layer

Convergence Protocol (PLCP) for ATM on DS-3 systems.

M FRAME(4760 BITS)
4

Figure 3.--DS3 signal format [CHIT94].

DS-3 (44.736) PDH Performance in Bursty Error Channels
The DS-3 asynchronous signal, shown in [CHIT94], is defined in the ANSI T I. 107 and in Bellcore TR-TSY-

000499 [LUNS95]. The DS-3 signal is partitioned into 4760 bit long multi-frames (M-frames). Every M-frame is
divided into seven 680 bit long multi-subframes (M-subframes). Each M-subframe is further divided into 8 blocks of

85 bits each and 84 of these 85 bits are available to carry data.
DS-3 signal's framing mechanism is robust against burst of errors as framing bits (F I-F4 in an M-subfrarne) are

well separated by 168 information bits and a C bit. Moreover, two M-frame bits are separated by 679 bits. An Out-
Of-Frame (OOF) state is declared in DS-3 signal when out of 8 (or 16) consecutive framing bits, 3 bits are tound in
error or when in 3 out of 4 consecutive M-frames, one or more M-frame bit errors are detected. It is unlikely that a

single burst of errors will effect more than one or two framing or control bits [LUNS95]. However. the parity
checking mechanism of DS-3 signal may not accurately indicate the number of errors for a bursty error channel

[CHIT94].
Performance of PLCP Over DS-3 PDH Over Bursty Error Channels

A Physical Layer Convergence Protocol (PLCP) has been defined in IEEEPS02.6, Bellcore TR-TSV-000773
and the ATM Forum UNI Specification Version 3.0 for mapping ATM cells in DS-3 signal. The PLCP frame shown

in figure 3 is 125 Its long, and consists of 12 ATM cells. Each ATM cell is preceded by 4 bytes of PLCP overhead.
Bytes A I and A2, preceding every ATM cell, are fixed framing bytes having values F4H and 28H, respectively.

Among other bytes, the path overhead (POH) bytes Z1 -Z6 are defined by the user. In order to maintain a nominal

frame interval of 125 Its, the last ATM cell is followed by a 13 or 14 nibble long trailer. The CI byte in the overhead
of the 12th cell indicates whether 13 or 14 nibbles are included in the trailer.
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I byte I byte 1 byte I byte 53 bytes 13 or 14

nibbles

AI, A2 = PLCP framing bytes

POI = Path Overhead Indicator

POH = Path Overhead

Z1 - Z6 = Reserved Byte

X = Unassigned Byte

B 1 = BIP-8 Byte

G I = PLCP Path Status Byte

Figure 4.--PLCP frame format for ATM [CHIT94].

An OOF state is entered whenever an error burst causes consecutive A I and A2 bytes to be in error. The in-
frame state is not reentered until two valid and consecutive A I and A2 byte pairs with valid POI bytes are tbund.
For every transition to OOF state, depending on the PLCP implementation and relative location of error in the
frame, 2 to 14 ATM cells will be lost. A burst of errors with a weight of 4 or more can corrupt CI byte beyond re-
pair. This will cause error in deciding whether trailer is 13 or 14 nibbles long, ultimately leading to framing errors.

Finally, PLCP calculates an 8-bit interleaved parity code and stores it in B ! byte. The first bit of the code pro-
vides even parity over an array made by the 1st bit of all the bytes in the 12x54 structure ( 12 rows consisting of an
ATM cell plus 1 POH byte) and so on. This mechanism works well only for random single bit errors. In the presence
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of a burst of errors that corrupts an even number of bits in the parity count, the B I byte, though it will likely detect
the burst of errors, will not give the accurate inlbrmation about the number of errors. Thus, it is clear that PLCP

format does not function well in a bursty error environment ICHIT94].

59 Columns

9 Rows

Figure 5.--34 Mbps PDH frames as specified in ITU-T G.832 [AGNE95].

Performance of E-3 (34.368 Mbps) PDH over bursty error channels [AGNE95] reports field trials done to

check the performance of ATM transmission over E-3 (34.368Mbps) PDH frames. In the E-3 frames, Error-

Monitoring (EM) byte stores a Bit Interleaved Parity 8 (BIP-8) code over all 537 bytes in the frame: that is, the first
bit of the EM byte ensurcs an even parity over the array made by the first bits of all 537 bytes in the frame and so

on. The other overhead bytes store timing and management information. One or more parity errors in the EM byte
makes the frame an Errored Block (EB). Also, BERBIp_8, calculated as the number of wrong bits in the EM byte

divided by thc total number of bits in the frame gives an approximate indication of BER.
The error performance parameters defined in ITU-T G.826, Errored Second Ratio (ESR), Severely Errored Sec-

ond Ration (SESR), and the Background Block Error Ratio (BBER), are measured by processing of EB's over a

measurement period. For measuring these parameters in the field trials, the test equipment detected EB's by a byte-

by-byte comparison of generated and received E-3 frames.
A burst of errors may affect more than a single bit in the array made by the corresponding bits of 537 bytes in

the frame. Thus, some of the bits of the BIP-8 code stored in EM byte may give a wrong indication. Therefore. in

the tested bursty error environment, BER_p_8 was not the same as actual BER. The conformance between BERB_p_8
and actual BER increased with decreasing BER. This is because with decreasing BER, average length of error burst

and the number of errors per burst decreases thereby decreasing the chance of multiple errors affecting the same
parity bit. However. there was little discrepancy between the values of G.826 parameters calculated by the test

equipment and the values calculated, based on EB's detected by errors in the EM byte. This is because it is highly
unlikely, that an error burst would cause errors in all 8 parity bits of the BIP-8 code stored in the EM byte. Thus, if a
burst of errors strikes an E-3 PDH frame, at least one bit of the BIP-8 code will be in error and the frame will be

declared an EB. Therefore values of G.826 parameters will not be affected.
The E-3 PDH frame seems to be robust against frame and cell synchronization errors in a bursty error environ-

ment as none of these errors were noticed during the field trials both for nominal and degraded conditions

lAGNE95].
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3.4. Solutions for improving error characteristics

In the previous sections, it was seen that the bursty error characteristics of FEC-coded satellite channels

adversely affect the perfc, rmance of physical, ATM, and AAL protocols. Currently, two popular methods used to get
around the problem of bursty errors are

Use of an "outer" Reed-Solomon (RS) coding/decoding in concatenation with "inner" convolutional

coding/viterbi decoding. Outer RS coding/decoding will perform the function of correcting error bursts
resulting from inner coding/decoding. RS codes consume little extra bandwidth (e.g., 9 percent at 2 Mbps)

[CUE95a]. In December 1992, INTELSAT approved the use of RS codes as an optional feature [IESS308].

CRC codes used in ATM and AAL layer headers are able to correct single bit errors. Thus, if the bits of N

headers are "interleaved" before encoding and "deinterleaved" after decoding, the burst of errors will get
"spread" over N headers such that two consecutive headers emerging after deinterleaving will most proba-

bly never have more than a single bit in error. Now, CRC code will be able to correct single bit errors and
going by dual mode of operation, no celI/AAL PDU will be discarded. Interleaving involves re-shuffling of

bits on the channel and there is no overhead involved. However, process of interleaving and deinterleaving
requires additional memory and introduces delay at both sender and receiver.

3.5 Performance studies of Reed-Solomon codes

The RS coding/decoding, when concatenated with the existing Convolutional encoding/Viterbi decoding, can
improve the per|ormance of ATM over satellite links significantly. In 1993, elaborate field trials were done by

AT&T, in cooperation with GUATEL. These trials suggested that, at C-band, a 2.048 Mbps Intermediate Data Rate
(IDR) link with RS coding/decoding is expected to operate at a BER lower than 109 for 99.96 percent of the year

even at locations with high rain precipitation [CUE95a]. This conclusion took into consideration the wide range of
carrier-to-noise values assigned to IDR links by INTELSAT. Moreover, the study showed that the performance
improvement with the use of RS codes is maximal when IDR link BER is between 10 -3 and 10 8. For IDR links with

BER less than 10 -8, the improvement in performance with the use of RS codes is difficult to quantify.

TABLE I.--COMPUTED G.826 PARAMETERS FOR 45 MBPS LINKS

BASED ON PREDICTED LINK BER PERFORMANCE [CUE95B]

G.826 Objective IDR Computed IDR+RS ComputedParameter

ESR 2.62x10 2 1.62x10 --_ 1.91×10 .4

SESR 0,07x10 2 4.32xl 04 3.95x10 6

B B ER 7.00x I ()_ 8.90x I 0 _' 3.82x I ()7

As shown in table I, the predicted performance for 45 Mbps IDR satellite links using RS codes substantially

betters predicted performance without RS coding and easily meets the performance objectives set for 45 Mbps sat-
ellite links by G.826 [CUE95b].

4. Satellite Delay Characteristics

This section highlights the delay components of satellite networks. The main components of delay are the

propagation and buffering delays. Propagation delays can be long for GEO systems. Delay variations can be high for

LEO systems.

4.1. Delay requirements of applications

We briefly discuss the basic qualitative requirements of three classes of applications, interactive voice/video,

non-interactive voice/video, and TCP/IP file transfer. Interactive voice requires very low delay (ITU-T specifies a

delay of less than 400 ms to mitigate echo effects) and delay variation (up to 3 ms specified by ITU-T). GEO sys-

tems have a high propagation delay of at least 250 ms from ground terminal to ground terminal. Other delay compo-

nents are additionally incurred and the total end-to-end delay can be higher than 400 ms. Although the propagation
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and inter-satellite link delays of LEO's are lower, LEO systems exhibit high delay variation due to connection han-

dovers, satellite and orbital dynamics, and adaptive routing. Non-interactive voice/video applications are real-time

applications whose delay requirements are not as stringent as their interactive counterparts. However. these applica-

tions also have stringent jitter requirements. As a result, the.jitter characteristics of GEO and LEO systems must be

carefully studied before they can service real-time voice-video applications.

The pertormance of TCP/IP file transfer applications is throughput dependent and has very loose delay

requirements. As a result, both GEO's and LEO's with sufficient throughput can meet the delay requirements of file

transfer applications. It is often misconstrued that TCP is throughput limited over GEO's due to the default TCP

window size of 64K bytes. The TCP large windows option allows the TCP window to increase beyond 64K bytes

and results in the usage of the available capacity even in high bandwidth GEO systems. The efficiency of TCP over

GEO systems can be low because the TCP window-based flow control mechanism takes several round trips to fully

utilize the available capacity. The large RTT in GEO's results in capacity being wasted during the ramp-up phase.

[TCPS98] describes several mechanisms being developed to mitigate latency effects on TCP over GEO's.

The TCP congestion control algorithm inherently relies on RTF estimates to recover from congestion losses.

The TCP RTT estimation algorithm is sensitive to sudden changes in delays as may be experienced in LEO constel-

lations. This may result in false timeouts and retransmits at the TCP layer. Enhanced RTT measurement techniques

are being developed for TCP to estimate the connection's RTT more accurately [TCPS98].

4.2. Satellite network delay model

In this section, we develop a simple delay model of a satellite network. This model can be used to estimate the

end-to-end delay of both GEO and LEO satellite networks.

The end-to-end delay (D) experienced by a data packet traversing the satellite network is the sum of the

transmission delay (tt), the uplink (tup) and downlink (tdo,_,,) ground segment to satellite propagation delays, the

inter-satellite link delay (tO, the onboard switching and processing delay (tO, and the buffering delay (tq). The inter-

satellite, onboard switching, processing, and buffering delays are cumulative over the path traversed by a connec-

tion. In this model, we only consider the satellite component of the delay. The total delay experienced by a packet is

the sum of the delays of the satellite and the terrestrial networks. This model does not incorporate the delay variation

experienced by the cells of a connection. The delay variation is caused by orbital dynamics, buffering, adaptive

routing (in LEO's), and onboard processing. Quantitative analysis of delay jitter in satellite systems is beyond the

scope of this study. The end-to-end delay (D) is given by

D = t t + tup + t i + tdown + t_ + tq

Transmission delay: The transmission delay (tO is the time taken to transmit a single data packet at the net-

work data rate.

packet_ size
t t -

data_ rate

For broadband networks with high data rates, the transmission delays are negligible in comparison to the satel-

lite propagation delays. For example, a 9180 byte TCP packet is transmitted at OC-3 in about 472 p.sec. This delay

is much less than the propagation delays in satellites.

Propagation delay: The propagation delay for the cells of a connection is the sum of the following three

quantities:

• The source ground terminal to source satellite propagation delay (t,,t,)

• The inter-satellite link propagation delays (ti)

• The destination satellite to destination ground terminal propagation delay' (ta,,w,,)

The uplink and downlink satellite-ground terminal propagation delays (tup and tdow,, respectively) represent the time
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source_ satellite_ dist

tul' = speed_of_signal

_OWtl

dest_ satellite_ dist

speed_ of__signal

taken for the signal to travel from the source ground terminal to the first satellite in the network (t_p), and the time

tbr the signal to reach the destination ground terminal from the last satellite in the network (qow,).

The inter-satellite link delay (tO is the sum of the propagation delays of the inter-satellite links (ISL's) traversed

by the connection. Inter-satellite links (crosslinks) may be in-plane or cross-plane links. In-plane links connect
satellites within the same orbit plane, while cross-plane links connect satellites in different orbit planes. In GEO

systems, ISL delays can be assumed to be constant over a connection's lifetime because GEO satellites are almost

stationary over a given point on the Earth, and with respect to one another. In LEO constellations, the ISL delays

depend on the orbital radius, the number of satellites-per-orbit, and the inter-orbital distance (or the number of
orbits). Also, the ISL delays change over the life of a connection due to satellite movement and adaptive routing

techniques in LEO's. As a result, LEO systems can exhibit a high variation in ISL delay.

E ISL_ lengths
It =

speed_ of_ signal

Buffering delay: Buffering delay (tq) iS the sum of the delays that occur at each hop in the network due to cell

queuing. Cells may be queued due to the bursty nature of traffic, congestion at the queuing points (Earth stations and
satellites), or due to media access control delays. Buffering delays depend on the congestion level, queuing and

scheduling policies, connection priority and ATM service category. CBR and real-time VBR connections suffer

minimum buffering delays because they receive higher priority than the non-real-time connections. Cells from ABR,

FR and UBR connections could suffer significant delay at each satellite hop during periods of congestion.

Switching and processing delays: The data packets may incur additional delays (tO at each satellite hop

depending on the amount of onboard switching and processing. For high data rate networks with packet/cell
switching, switching and processing delays are negligible compared to the propagation delays.

4.3 Delay variation characteristics

Although LEO networks have relatively smaller propagation delays than GEO networks, the delay variation in

LEO's can be significant. The delay variation in LEO systems can arise from several factors:

Handovers: The revolution of the satellites within their orbits causes them to change position with respect to

the ground terminals. As a result, the ground terminal must handover the connections from the satellite descending

below the horizon to the satellite ascending from the opposing horizon. Based on the velocity, altitude, and the cov-

erage of the satellites, it is estimated that call handovers can occur on an average of every 8 to 11 rain. [IQTC97].

The handover procedure requires a state transfer from one satellite to the next, and will result in a change in the

delay characteristic of the connection at least for a short time interval. If the satellites across the seam of the con-

stellation are communicating via crosslinks, the handover rate is much more frequent because the satellites are trav-

elling in opposite directions.

Satellite motion: Not only do the satellites move with respect to the ground terminal, they also move relative to

each other. When satellites in adjacent orbits cross each other at the poles, they are now traveling in opposite sides

of each other. As a result, calls may have to be rerouted accordingly resulting in further changes in delays.

Buffering and processing: A typical connection over a LEO system might pass through several satellites and

experience buffering and processing delays at each hop. For CBR traffic, the buffering delays are small, but for

bursty traffic over VBR-rt tused by video applications), the cumulative effects of the delays and delay variations

could be large depending on the burstiness and the amount of overbooking in the network.

Adaptive routing: Due to the satellite orbital dynamics and the changing delays, most LEO systems are

expected to use some lorm of adaptive routing to provide end-to-end connectivity. Adaptive routing inherently
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introducescomplexityanddelayvariation.Inaddition,adaptiveroutingmayresultinpacketreordering.Theseout
oforderpacketswillhavetobebufferedattheedgeofthenetworkresultingin furtherdelayand.jitter.

GEOsystemsexhibitrelativelystabledelaycharacteristicsbecausetheyarealmoststationarywithrespectto
thegroundterminals.ConnectionhandoversarcrareinGEOsystemsandaremainlyduetofaultrecoveryreasons.
Asaresult,thereisatrade-offbetweendelayand.jittercharacteristicsofGEOandLEOsystems,especiallyfor
interactivereal-timeapplications.

5. TCP Over Satellite ATM: Interoperability Issues

Both interoperability issues, as well as performance issues need to be addressed before a transport layer proto-

col like TCP can satisfactorily work over long latency satellite ATM networks. A crucial issue in satellite network-

ing is that of the high end-to-end propagation delay of satellite connections. With an acknowledgment and timeout-

based congestion control mechanism (like TCP's), performance is inherently related to the delay-bandwidth product

of the connection. As a result, the congestion control issues for broadband satellite networks are somewhat different

from those of low latency terrestrial networks.

Figure 6 illustrates the protocol stack tbr Internet protocols over satellite ATM. The lnternet RFC 2225

describes the interoperability of IP over ATM. The satellite ATM interface device separates the existing SONET and

Physical Layer Convergence Protocol (PLCP) [AKYL97] KOTA97.

The perfbrmance optimization problem can be analyzed from two perspectives--network architectures and end-

system architectures. The network can implement a variety of mechanisms to optimize resource utilization, fairness

and higher layer throughput. For ATM, these include enhancements like feedback control, intelligent drop policies

to improve utilization, per-VC buffer management to improve fairness, and even minimum throughput guarantees to

the higher layers [GOYAL98b]. At the end system, the transport layer can implement various congestion avoidance

and control policies to improve its performance and to protect against congestion collapse. Several transport layer

congestion control mechanisms have been proposed and implemented. The mechanisms implemented in TCP are

slow start and congestion avoidance [JACOBS88], last retransmit and recovery and selective acknowledgments

[MATHIS961.

5.1. TCP congestion control

TCP uses a window-based protocol lbr flow control. TCP connections provide end-to-end flow control to limit

the number of packets in the network. The flow control is entbrced by two windows. The receiver's window

(RCVWND) is enforced by the receiver as a measure of its buffering capacity. The congestion window (CWND) is

kept at the sender as a measure of the capacity of the network. The sender sends data one window at a lime, and
cannot send more than the minimum of RCVWND and CWND into the network.

The basic TCP congestion control scheme (we will refer to this as Vanilla TCP) consists of the "Slow Start" and

"Congestion Avoidance" phases. The variable SSTHRESH is maintained at the source to distinguish between the

two phases. The source starts transmission in the slow start phase by sending one segment (typically 512 bytes) of

data; that is, CWND = 1 TCP segment. When the source receives an acknowledgment lbr a new segment, the source

increments CWND by 1. Since the time between the sending of a segment and the receipt of its acknowledgment is

an indication of the RTT of the connection, CWND is doubled every RTT during the slow start phase. The slow start

phase continues until CWND reaches SSTHRESH (typically initialized to 64K bytes) and then the congestion

avoidance phase begins. During the congestion avoidance phase, the source increases its CWND by 1/CWND every

time a segment is acknowledged. The slow start and the congestion avoidance phases correspond to an exponential

increase and a linear increase of the congestion window every, respectively.
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If aTCPconnectionlosesapacket,thedestinationrespondsbysendingduplicateacknowledgmentslbreach
out-of-orderpacketreceived.Thesourcemaintainsaretransmissiontimeoutforthelastunacknowledgedpacket.
Thetimeoutvalueisreseteachtimeanewsegmentisacknowledged.Thesourcedetectscongestionbythetrigger-
ingoftheretransmissiontimeout.Atthispoint,thesourcesetsSSTHRESHtohalfofCWND.Moreprecisely,
SSTHRESHissettomax(2,min(CWND/2,RCVWND)).CWNDissettoonesegmentsize.

Asaresult,CWND< SSTHRESHandthesourceenterstheslowstartphase.Thesourcethenretransmitsthe
lostsegmentandincreasesitsCWNDbyoneeverytimeanewsegmentisacknowledged.It takeslog2(CWNDonJ
2×MSS)RTT'sfromthepointwhenthecongestionwasdetected,forCWNDtoreachthetargetvalueofhalfits
originalsize(CWNDong).Here,MSSistheTCPmaximumsegmentsizevalueinbytes.Thisbehaviorisunaffected
bythenumberofsegmentslostfromaparticularwindow.

If asinglesegmentislost.andif thereceiverbuffersoutofordersegments,thenthesenderreceivesacumula-
tiveacknowledgmentandrecoversfromthecongestion.Otherwise,thesenderattemptstoretransmitalltheseg-
mentssincethelostsegment.Ineithercase,thesendercongestionwindowincreasesbyonesegmentloreach
acknowledgmentreceived,andnotforthenumberofsegmentsacknowledged.Thisrecoverycanbeveryslowfor
longlatencysatelliteconnections.Notethatalthoughthecongestionwindowmayincreasebeyondtheadvertised
receiverwindow(RCVWND),thesourcewindowislimitedbytheminimumofthetwo.Thetypicalchangesinthe
sourcewindowplottedagainsttimeareshowninfigure7.

MostTCPimplementationsusea500mstimergranularitytbrtheretransmissiontimeout.TheTCPsource
estimatestheRTToftheconnectionbymeasuringthetime(numberofticksofthetimer)betweenthesendingofa
segmentandthereceiptoftheacknowledgmentforthesegment.Theretransmissiontimeriscalculatedasafunction
oftheestimatesoftheaverageandmeandeviationoftheRTT[JACOBS88].Becauseofcoarse-grainedTCPtimers.
whenthereis lossduetocongestion,significanttimemaybelostwailingfortheretransmissiontimeouttotrigger.
Oncethesourcehassentoutallofthesegmentsallowedbyitswindow,it doesnotsendanynewsegmentswhen
duplicateacknowledgmentsarebeingreceived.Whentheretransmissiontimeouttriggers,theconnectionentersthe
slowstartphase.Asaresult,thelinkmayremainidleforalongtimeandexperiencelowutilization.

CoarsegranularityTCPtimersandretransmissionof segmentsbythego-back-Npolicyarethemainreasons
thatTCPsourcescanexperiencelowthroughputandhighfiletransferdelaysduringcongestion.

5.2. Design issues for TCP/IP over ATM

There are several options for transporting non-real-time TCP connections over a satellite ATM network. The

Unspecified Bit Rate (UBR) service provided by ATM networks has no explicit congestion control mechanisms

[TM496]. However, it is expected that many TCP implementations will use the UBR service category. TCP employs

a window-based end-to-end congestion control mechanism to recover from segment loss and avoids congestion col-

lapse. Several studies have analyzed the perfi_rmance of TCP over the UBR service. TCP sources running over UBR

with limited network buffers experience low throughput and high unfairness [FANG95, GOYAL97, LI95, LI96].

Several design options available to UBR networks and end-systems for improving performance. Intelligent drop

policies at switches can be used to improve throughput of transport connections. Early Packet Discard (EPD)
[ROMANOV95] has been shown to improve TCP throughput but not fairness [GOYAL97]. Enhancements that

perform intelligent cell drop policies at the switches need to be developed for UBR to improve transport layer

throughput and fairness. A policy for selective cell drop based on per-VC buffer management can be used to im-

prove fairness. Providing guaranteed minimum rate to the UBR traffic has also been discussed as a possible candi-

date to improve TCP performance over UBR.
Providing a rate guarantee to the UBR service category can ensure a continuous flow of TCP packets in the

network. UBR with guaranteed rate requires no additional signaling requirements or standards changes, and can be

implemented on current switches that support the UBR service. Guaranteed rate service is intended for applications
which do not need any QoS guarantees, but whose performance depends on the availability of a continuous amount

of bandwidth. The goal of providing guaranteed rate is to protect the UBR service category from total bandwidth

starvation, and provide a continuous minimum bandwidth guarantee. In the presence of high load of higher priority

Constant Bit Rate (CBR)+ Variable Bit Rate (VBR), and Available Bit Rate (ABR) traffic, TCP congestion control

mechanisms are expected to benefit from a guaranteed minimum rate.

Guaranteed Frame Rate (GFR) has been recently proposed in the ATM Forum as an enhancement to the UBR

service category. GFR will provide a minimum rate guarantee to VC's at the frame level. The GFR service also
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allowsforthelairusageofanyextranetworkbandwidth.GFRrequiresminimumsignalingandconnectionman-
agementfunctions,anddependsonthenetwork'sabilitytoprovideaminimumratetoeachVC.GFRislikelytobe
usedbyapplicationsthatcanneitherspecifythetrafficparametersneededforaVBRVC,norhavecapabilityfor
ABR(forrate-basedfeedbackcontrol).Currentinternetworkingapplicationsfallintothiscategory,andarenot
designedtorunoverQoS-basednetworks.Theseapplicationscouldbenefitfromaminimumrateguaranteebythe
network,alongwithanopportunitytofairlyuseanyadditionalbandwidthleftoverfromhigherpriorityconnections.
InthecaseofLAN*sconnectedbysatelliteATMbackbones,networkelementsoutsidetheATMnetworkcouldalso
benefitfromGFRguarantees.Forexample,IPtoutersseparatedbyasatelliteATMnetworkcoulduseGFRVC'sto
exchangecontrolmessages.

TheABRservicecategoryisanotheroptiontoimplementTCP/IPoverATM.TheABRservicecategoryis
specifiedbyaPCRandMinimumCellRate(MCR)whichisguaranteedbythenetwork.Thebandwidthallocated
bythenetworktoanABRconnectionmayvaryduringthelifeofaconnection,butmaynotbelessthanMCR.ABR
connectionsusearate-basedclosed-loopend-to-endfeedback-controlmechanismforcongestioncontrol.Thenet-
worktriestomaintaina lowCellLossRatiobychangingtheallowedcellrates(ACR)atwhichasourcecansend.
Switchescanalsousethevirtualsource/virtualdestination(VS/VD)featuretosegmenttheABRcontrolloopinto
smallerloops.InaVS/VDnetwork,aswitchcanadditionallybehavebothasa(virtual)destinationendsystemand
asa(virtual)sourceendsystem.Thisfeaturecanallowfeedbackfromnearbyswitchestoreachsourcesfaster,and
allowhop-by-hopcontrol.SeveralstudieshaveexaminedtheperformanceofTCP/IPovervariousABRfeedback
controlschemes.Thesestudieshaveindicatedthatgoodschemescaneffectivelyreducethebufferrequirementl_)r
TCP over satellite especially for long delay paths.

In addition to network-based drop policies, end-to-end flow control and congestion control policies can be

effective in improving TCP performance over UBR. The last retransmit and recovery mechanism [FRR]+ can be
used in addition to slow start and congestion avoidance to quickly recover from isolated segment losses. The selec-

tive acknowledgments (SACK) option [MATHIS96] has been proposed to recover quickly from multiple segment
losses [FLOYD95]. A change to TCP's fast retransmit and recovery has also been suggested in [FALL96] and

[HOE96].

6. UBR and UBR+

Most ATM networks are expected to be implemented as backbone networks within an lP-based Internet where

edge devices separate ATM networks from IP networks. Since TCP has its own flow and congestion control mecha-

nisms, many TCP/IP connections are expected to use the UBR service. As a result, it is important to assess the per-
lbrmance of TCP/IP over UBR in a satellite network.

In its simplest form, an ATM switch implements a tail drop policy for the UBR service category. When a cell

arrives at the FIFO queue, if the queue is full the cell is dropped, otherwise the cell is accepted. If a cell is dropped,
the TCP source loses time, waiting for the retransmission timeout. Even though TCP congestion mechanisms effec-

tively recover from loss, the resulting throughput can be very low. It is also known that simple FIFO buffering with
tail drop results in excessive wasted bandwidth. Simple tail drop of ATM cells results in the receipt of incomplete

segments. When part of a segment is dropped at the switch, the incomplete segment is dropped at the destination

during reassembly. This wasted bandwidth further reduces the effective TCP throughput. Perlbrmance of TCP over

UBR can be improved using buffer management policies and end-system policies. The key performance results of

TCP over UBR and its enhancements are described in this section. The study of end-system parameters is not pre-

sented in this section. In general, TCP perlormance is also affected by TCP congestion control mechanisms and TCP

parameters such as segment size, timer granularity, receiver window size, slow start threshold and initial window
size.
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6.1.Performancemetrics

The performance of TCP over UBR is measured by the efficiency and fairness defined as follows:

ZXi

i:l
Efficiency

-I'_ Illgl X

Fairness :

N / ,_2

ZIx,I
i=1 /ei J

Nx Z xi-
i=l ei

Where xi is the throughput of the ithTCP connection, x.,,,, is the maximum TCP throughput achievable on the

given network, and N is the number of TCP connections. The TCP throughputs are measured at the destination TCP

layers. Throughput is defined as the total number of bytes delivered to the destination application, divided by the

total simulation time. The results are reported in Mbps. The maximum possible TCP throughput (x,,,,,0 is the

throughput attainable by the TCP layer running over UBR on a 155.52 Mbps link. For 9180 bytes of data (TCP

maximum segment size), the ATM layer receives 9180 bytes of data + 20 bytes of TCP header + 20 bytes of IP

header + 8 bytes of LLC header + 8 bytes of AAL5 trailer. These are padded to produce 193 ATM cells. Thus,

each TCP segment results in 10229 bytes at the ATM layer. From this, the maximum possible throughput = 9180/

10229 = 89.7 percent = 135 Mbps approximately on a 155.52 Mbps link.
Here e_ is the expected throughput of the ith TCP connection. Both metrics lie between zero and one, and the

desired values of efficiency and fairness are close to I [JAIN91]. In the symmetrical configuration presented above,

): max

e i ----
N

and the fairness metric represents an equal share of the available data rate. For more complex configurations, the e,

term can represent maximum-minimum fairness or any other policy-based fairness.

6.2. TCP over UBR: performance

TCP performs best when there is zero loss. In this situation, TCP is able to fill the pipe and fully utilize the link

bandwidth. During the exponential rise phase (slow start), TCP sources send out two segments for every segment

that is acknowledged. For N TCP sources, in the worst case, a switch can receive a whole window's worth of seg-

ments from N-1 sources while it is still clearing out segments from the window of the Nth source. As a result, the

switch can have buffer occupancies of up to the sum of all the TCP maximum sender window sizes. For a switch to

guarantee zero loss tor TCP over UBR, the amount of buffering required is equal to the sum of the TCP maximum

window sizes for all the TCP connections. Note that the maximum window size is determined by the minimum of

the sender's congestion window and the receiver's window.

TCP over vanilla UBR results in low fairness in low latency and long latency configurations. This is mainly due

to the TCP congestion control mechanisms together with the tail drop policies as discussed earlier. Another reason

for poor performance is the synchronization of TCP sources. TCP connections are synchronized when their sources

timeout and retransmit at the same time. This occurs because packets from all sources are dropped forcing them to

enter the slow start phase. However, in this case. when the switch buffer is about to overflow, one or two connec-

tions get lucky and their entire windows are accepted while the segments from all other connections are dropped. All

these connections wait tor a timeout and stop sending data into the network. The connections that were not dropped

send their next window and keep filling up the buffer. All other connections timeout and retransmit at the same time.
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This results in their segments being dropped again and the synchronization effect is seen. The sources that escape

the synchronization get most of the bandwidth. The synchronization effect is particularly important when the num-

ber of competing connections is small.

For smaller buffer sizes, efficiency typically increases with increasing buffer sizes. Larger buffer sizes result in

more cells being accepted before loss occurs, and therefore higher efficiency. This is a direct result of the depen-

dence of the buffer requirements to the sum of the TCP window sizes.

6.3. UBR+: enhancements to UBR

Several recent papers have focussed on fair buffer management for best effort network traffic. All these pro-

posals all drop packets when the buffer occupancy exceeds a certain threshold. Most buffer management schemes

improve the efficiency of TCP over UBR. However, only some of the schemes affect the fairness properties of TCP

over UBR. The proposals for buffer management can be classified into four groups based on whether they maintain

multiple buffer occupancies (Multiple Accounting (MA)) or a single global buffer occupancy (Single Accounting

(SA)), and whether they use multiple discard thresholds (Multiple Thresholds (MT)) or a single global discard

Threshold (Single Threshold (ST)). The SA schemes maintain a single count of the number of cells currently in the

buffer. The MA schemes classify the traffic into several classes and maintain a separate count for the number of

cells in the buffer for each class. Typically, each class corresponds to a single connection, and these schemes main-

tain per-connection occupancies. In cases where the number of connections far exceeds the buffer size, the added

overhead of per-connection accounting may be very expensive. In this case, a set of active connections is defined as

those connections with at least one packet in the buffer, and only the buffer occupancies of active connections are

maintai ned.

TABLE II.--CLASSIFICATION OF BUFFER MANAGEMENT SCHEMES

Buffer man-

a[ement class
Examples Threshold type

(static/dynamic)

Static

Drop type (deterministic/

probabilistic)

SA-ST EPD, PPI) Deterministic

RED Static Probabilislic

MA-ST FREt)

SD. FBA

Dynamic

Dynamic

D_,namicVQ+D_,namic EPD

PME+ERED

Probabilistic

Deterministic

Deterministic

MA-MT Static Probabilistic

DFBA Dynamic Probabilistic

VQ+MCR schedulin_

Priority drop

D),namic Deterministic

Static DeterministicSA-MT

Tag
sensitive

No

No

No

No

No

Yes

Yes

No

Yes

Schemes with a global threshold (ST) compare the buffer occupancy(s) with a single threshold and drop packets

when the buffer occupancy exceeds the threshold. Multiple thresholds (MT's) can be maintained corresponding to

classes or connections or to provide differentiated services. Several modifications to this drop behavior can be im-

plemented. Some schemes like Random Early Detection (RED) and Flow Random Early Drop (FRED) compare the

average(s) of the buffer occupancy(s) to the threshold(s). Some like EPD maintain static threshold(s) while others

like FBA maintain dynamic threshold(s). In some, packet discard may be probabilistic (RED) while others drop

packets deterministically (EPD/PPD). Finally, some schemes may differentiate packets based on packet tags. For

example, packet tags could use the CLP bit in ATM cells or the DSCP'field in the IP header of the IETF's differenti-

ated dervices architecture. Table II lists the four classes of buffer management schemes and examples of schemes for

these classes. The example schemes are briefly discussed below.

The first SA-ST schemes included Early Packet Discard (EPD), Partial Packet Discard (PPD) [ROMANOV95]

and RED [FLOYD93]. EPD and PPD improve network efficiency because they minimize the transmission of partial

packets by the network. Since they do not discriminate between connections in dropping packets, these schemes are

unfair in allocating bandwidth to competing connections [GOYAL98b]. For example, when the buffer occupancy

reaches the EPD threshold, the next incoming packet is dropped even if the packet belongs to a connection that has

received less than its fair share of the bandwidth. RED maintains a global threshold tor the average queue. When the

average queue exceeds this threshold, RED drops packets probabilistically using a uniform random variable as the
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drop probability. The basis for this is that uniform dropping will drop packets in proportion to the input rates of the

connections. Connections with higher input rates will lose proportionally more packets than connections with lower

input rates, thus maintaining equal rate allocation.
However, it has been shown in [LIN97] that proportional dropping cannot guarantee equal bandwidth sharing.

The paper also contains a proposal for FRED. FRED maintains per-connection buffer occupancies and drops packets

probabilistically if the per-connection occupancy exceeds the average queue length. In addition. FRED ensures that
each connection has at least a minimum number of packets in the queue. In this way, FRED ensures that each flow

has roughly the same number of packets in the buffer, and FCFS scheduling guarantees equal sharing of bandwidth.

FRED can be classified as one that maintains per-connection queue lengths, but has a global threshold (MA-ST).

The Selective Drop (SD) [GOYAL98b] and Fair Buffer Allocation (FBA) [HEIN] schemes are MA-ST

schemes proposed lot the ATM UBR service category. These schemes use per-connection accounting to maintain
the current buffer utilization of each UBR Virtual Channel (VC). A fair allocation is calculated for each VC, and if

the VC's buffer occupancy exceeds its fair allocation, its subsequent incoming packet is dropped. Both schemes

maintain a threshold R, as a fraction of the buffer capacity K. When the total buffer occupancy exceeds RxK, new

packets are dropped depending on the VC+'s buffer occupancy (Y_). In the SD scheme, a VC's entire packet is

dropped if

SD:

R ANO( >+/
FBA:

X-R)

where N_, is the number of active VC's (VC's with at least one cell the buffer), and Z is another threshold parameter

(0 < Z < 1) used to scale the effective drop threshold.

Both SD and FBA improve both fairness and efficiency of TCP over UBR. This is because cells from over-

loading connections are dropped in preference to underloading ones. As a result, they are effective in breaking TCP

synchronization. When the buffer exceeds the threshold, only cells from overloading connections are dropped. This

frees up some bandwidth and allows the underloading connections to increase their window and

obtain more throughput.

The Virtual Queuing (VQ) [WU97] scheme is unique because it achieves FBA by emulates on a single FIFO

queue, a per-VC queued round-robin server. At each cell transmit time, a per-VC accounting variable ($) is decre-
mented in a round-robin manner, and is incremented whenever a cell of that VC is admitted in the buffer. When _',

exceeds a fixed threshold, incoming packets of the i 'h VC are dropped. An enhancement called Dynamic EPD

changes the above drop threshold to include only those sessions that are sending less than their fair shares. Since the

above MA-ST schemes compare the per-connection queue lengths (or virtual variables with equal weights) with a

global threshold, they can only guarantee equal buffer occupancy (and thus throughput) to the competing connec-

tions. These schemes do not allow for specifying a guaranteed rate for connections or groups of connections.

Moreover, in their present forms, they cannot support packet priority based on tagging.

Another enhancement to VQ, called MCR scheduling [SIU97], proposes the emulation of a weighted scheduler

to provide Minimum Cell Rate (MCR) guarantees to ATM connections. In this scheme, a per-VC, weighted variable

(Wi) is maintained, and compared with a global threshold. A time interval T is selected, at the end of which. W_ is

incremented by MCR_xT for each VC i. The remaining algorithm is similar to VQ. As a result of this weighted up-
date. MCR's can be guaranteed. However, the implementation of this scheme involves the update of W+ for each VC

after every time T. To provide tight MCR bounds, a smaller value of T must be chosen, and this increases the com-

plexity of the scheme. For best effort traffic (like UBR), thousands of VC could be sharing the buffer, and this

dependence on the number of VC's is not an efficient solution to the buffer management problem. Since the variable

W_ is updated differently for each VC i, this is equivalent to having different thresholds fbr each VC at the start of
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theinterval.ThesethresholdsarethenupdatedintheoppositedirectionofWi.Asaresult,VQ+MCRschedulingcan
beclassifiedasanMA-MTscheme.

[FENG]proposesacombinationofaPacketMarkingEngine(PME)andanenhancedREDschemebasedon
per-connectionaccountingandmultiplethresholds(MA-MT).PME+EREDisdesignedfortheIETF'sdifferentiated
servicesarchitecture,andcanprovidelooserateguaranteestoconnections.ThePMEmeasuresper-connection
bandwidthsandprobabilisticallymarkspacketsif themeasuredbandwidthsare lower than the target bandwidths

(multiple thresholds). High priority packets are marked, and low priority packets are unmarked. The ERED mecha-

nism is similar to RED except that the probability of discarding marked packets is lower that that of discarding

unmarked packets. The PME in a node calculates the observed bandwidth over an update interval, by counting the

number of accepted packets of each connection by the node. Calculating bandwidth can be complex that may

require averaging over several time intervals.
The Differential Fair Buffer Allocation (DFBA) [GOYAL99] scheme can be used to provide per-VC rate guar-

antees to TCP traffic over GFR VC's. DFBA maintains weighted per-VC buffer occupancies and probabilistically

drops packets when the buffer occupancy exceeds a low threshold.

A simple SA-MT scheme can be designed that implements multiple thresholds based on the packet priorities.

When the global queue length (single accounting) exceeds the first threshold, packets tagged as lowest priority are

dropped. When the queue length exceeds the next threshold, packets from the lowest and the next priority are

dropped. This process continues until EPD/PPD is performed on all packets. The performance of such schemes

needs to bc analyzed. However, these schemes cannot provide per-connection throughput guarantees and suffer from

the same problem as EPD, because they do not differentiate between overloading and underloading connections.

Table III illustrates the fairness properties of the tbur buffer management groups presented above.

TABLE III.--FAIRNESS PROPERTIES OF

BUFFER MANAGEMENT SCHEMES

Class Equal band- Weighted
width alloca- bandwidth

tion allocation

SA-ST No No

MA-ST Yes No

M A- MT Yes Yes

SA-MT ....

6.4. TCP enhancements

TCP Reno implements the last retransmit and recovery algorithms that enable the connection to quickly recover

from isolated segment losses [STEV97].

For long latency connections, last retransmit and recovery hurts the efficiency. This is because congestion typi-

cally results in multiple packets being dropped. Fast retransmit and recovery cannot recover from multiple packet

losses and slow start is triggered. The additional segments sent by fast retransmit and recovery (while duplicate

acknowledgments are being received) may be retransmitted during slow start. In WAN links with large bandwidth

delay products, the number of retransmitted segments can be significant. Thus, fast retransmit can add to the con-

gestion and reduce throughput.

A modification to Reno is proposed in [FALL96], [HOE96] to overcome this shortcoming. In this scheme, the

sender can recover from multiple packet losses without having to time out. In case of small propagation delays, and

coarse timer granularities, this mechanism can effectively improve TCP throughput over vanilla TCP.

TCP with Selective Acknowledgments (SACK TCP) has been proposed to efficiently recover from multiple

segment losses [MATHIS96]. In SACK TCP, acknowledgments contain additional information about the segments

that have been received by the destination. When the destination receives out-of-order segments, it sends duplicate

acknowledgments (SACK's) acknowledging the out-of-order segments it has received. From these SACK's, the

sending TCP can reconstruct information about the segments not received at the destination. As a result, the sender

can recover from multiple dropped segments in about one round trip.

For most cases, for a given drop policy, SACK TCP provides higher efficiency than the corresponding drop

policy in vanilla TCP. This confirms the intuition provided by the analysis of SACK that SACK recovers at least as

last as slow start when multiple packets are lost. In fact, for most cases, SACK recovers faster than both fast
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retransmit/recoveryandslowstartalgorithms.TheeffectofdroppoliciesforLAN'sisveryimportantandcan
dominatetheeffectof SACK.ForUBRwithtaildrop+SACKprovidesasignificantimprovementovervanillaand
RenoTCP's.However,asthedroppoliciesgetmoresophisticated,theeffectofTCPcongestionmechanismis less
pronounced.ThisisbecausethetypicalLANswitchbuffersizesaresmallcomparedtothedefaultTCPmaximum
windowof64Kbytesandsobuffermanagementbecomesaveryimportantfactor.

ThethroughputimprovementprovidedbySACKissignificantlot longlatencyconnections.Whenthepropa-
gationdelayislarge,atimeoutresultsinthelossofasignificantamountoftimeduringslowstartfromawindowof
onesegment.WithRenoTCP(withlastretransmitandrecovery),performanceisfurtherdegraded(formultiple
packetlosses)becauselimeoutoccursatamuchlowerwindowthanvanillaTCP.WithSACKTCP,atimeoutis
avoidedmostofthetime,andrecoveryiscompletedwithinasmallnumberofroundtrips.Evenif timeoutoccurs,
therecoveryisasfastasslowstartbutsometimemaybelostintheearlierretransmissions.

TheperformanceofSACKTCPcanbeimprovedby intelligent drop policies like EPD, SD, FBA, and RED.

This is consistent with other results of SACK with vanilla and Reno TCP. Thus, we recommend that intelligent drop

policies be used in UBR service. It should be noted that for long latency connections, the improvement in perform-
ance due to SACK exceeds the improvement due to intelligent buffer management

policies.
The fairness values for SD are comparable to the values with the other TCP versions. Thus, SACK TCP does

not hurt the fairness in TCP connections with an intelligent drop policy-like SD.

6.5. Buffer requirements for TCP over UBR+

Buffer requirements lor SACK TCP over UBR with SD have been studied in [GOYAL98c]. Figure 8 shows the

basic network configuration used in the paper to assess buffer requirements at a single bottleneck node. In the figure,

the switches represent the Earth stations that connect to the satellite constellation. The Earth stations interface the

terrestrial network with the satellite network. In general, the satellite network model may include onboard process-

ing and queuing. In the results stated in this section, no onboard processing or queuing is performed. The bottleneck

node is the Earth station at the entry to the satellite network. As a result, in the experiments, no queuing delays occur

in the satellite network. All processing and queuing are performed at the Earth stations. The goal of this study is to

assess the buffer requirements of the bottleneck node (in this case, the Earth station) for good TCP/IP performance.

All simulations use the N source configuration shown in the figure. All sources are identical and persistent TCP

sources. The TCP layer always sends a segment as long as the TCP window permits it. Moreover, traffic is unidirec-

tional so that only, the sources send data. The destinations only send acknowledgments. The TCP delayed acknowl-

edgment timer is deactivated, and the receiver sends an acknowledgment as soon as it receives a segment. TCP with

selective acknowledgments (SACK TCP) is used in our simulations. All link bandwidths are 155.52 Mbps, and peak

cell rate at the ATM layer is 149.7 Mbps. This accounts for a SONET-like overhead in the satellite component of the
network.

The lbllowing parameters are used to assess the buffer requirements:

Latency: The primary aim is to study the buffer requirements for long latency connections. A typical latency

from Earth station to Earth station for a single LEO hop is about 5 ms. The latencies for multiple LEO hops can

easily be 50 ms or more from Earth station to Earth station. GEO latencies are typically 275 ms from Earth station
to Earth station for Earth stations that are not on the equator. The paper studies these three latencies (5, 50, and

275 ms) with various numbers of sources and buffer sizes. The link delays between the switches and the end

systems are 5 ms in all configurations. This results in round trip propagation delays (RTT) of 30, 120, and 570 ms,

respectively.

Number of sources: To ensure that the recommendations are scalable and general with respect to the number
of connections, configurations with 5, 15, and 50 TCP connections on a single bottleneck link are used. For single

hop LEO configurations, 15, 50 and 100 sources are used.
Buffer size: This is the most important parameter of this study. The goal is to estimate the smallest buffer size

that results in good TCP performance, and is scalable to the number of TCP sources. The values chosen for the

buffer size are approximately:

Buffer_ size = 2-k × RTT × bottleneck_ link_ data_ rate+k = -1.6
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Figure 8.---Simulation model for TCP/IP over UBR.

that is. 2, 1.0.5, 0.25, 0.125, 0.0625, 0.031 and 0.016 multiples of the round trip delay-bandwidth product of the
TCP connections are chosen. The resulting buffer sizes (in cells) used in the Earth stations are as follows:

Single LEO: 375,750, 1500, 3000, 6000, 12000 (=1 RTT), 24000 and 36000 cells.

Multiple LEO: 780, 1560, 3125, 6250, 12500, 25000, 50000 (=1 RTT), and 100000 cells.
GEO: 3125, 6250, 12500, 25000, 50000, 100000, 200000 (=1 RTT), and 400000 cells.

The plots of the buffer size against the achieved TCP throughput for different delay-bandwidth products and

number of sources are shown. The asymptotic nature of this graph provides information about the optimal buffer

size for the best performance.

Buffer allocation policy: SD is used to fairly allocate switch buffers to the competing TCP
connections.

End system policies: SACK TCP [RF2018] is used, for this study. The maximum value of the TCP receiver win-

dow is 600000 bytes, 250(0K_ bytes and 8704000 bytes for single hop LEO, multiple hop LEO, and GEO,

respectively. These window sizes are obtained using the TCP window scaling option, and are sufficient to achieve

lull utilization on the 155.52 Mbps links. The TCP maximum segment size is 9180 bytes. This contorms to the seg-

ment size recommended for TCP connections over long latency connections. The TCP timer granularity is set to

100 ms. This value limits the time taken for retransmissions to multiples of 100 ms. The value is chosen to balance

the attainable throughput with the limitations of the TCP RTT measurement algorithm. With large granularity,

TCP could wait a long time before detecting packet loss. resulting in poor throughput. Finer granularity of the
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retransmissiontimerleadstofalsetimeoutsevenwithasmallvariationinthemeasuredRTTvalues.Figures9to 11
showtheresultingTCPefficienciesforthe3differentlatencies.Eachpointinthefigureshowstheefficiency(total
achievedTCPthroughputdividedbymaximumpossiblethroughput)againstthebuffersizeused.Eachfigureplotsa
differentlatency,andeachsetofpointsconnectedbyaline)inafigurerepresentsaparticularvalueofN(thenum-
berofsources).
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For very small buffer sizes. (0.016R'Iq', 0.031RTT, 0.0625RTT), the resulting TCP throughput is very low. In

fact, lot a large number of sources (N = 50), the throughput is sometimes close to zero. For small buffer sizes, the

performance of TCP/IP deteriorates with an increasing number of sources. This is because more TCP packets are

dropped from each connection causing TCP timeout and retransmissions. This results in decreased throughput. For

moderate buffer sizes (less then one round-trip delay times bandwidth), TCP throughput increases with increasing

buffer sizes. TCP throughput asymptotically approaches the maximal value with further increase in buffer sizes.

TCP performance over UBR for sufficiently large buffer sizes is scalable with respect to the number of TCP sources.

The throughput is never 100 percent, but for buffers greater than 0.5xRTI', the average TCP throughput is over

98 percent irrespective of the number of sources. As a result, each queuing point must have sufficient buffers to sup-

port one delay-bandwidth product worth of TCP data so that it can ensure minimal loss.

The simulation results show that TCP sources with a good per-VC buffer allocation policy-like SD, can effec-

tively share the link bandwidth. A buffer size of about 0.5RTT to I RTT is sufficient to provide over 98 percent

throughput to infinite SACK TCP traffic for long latency networks and a large number of sources. This buffer re-

quirement is independent of the number of sources. The fairness in the throughputs measured by the fairness index is

high due to the SD policy [GOYAL97a].

To conclude this section, TCP performance over UBR can be improved by either improving TCP using selec-

tive acknowledgments, or by introducing intelligent buffer management policies at the switches. Efficient buffer

management has a more significant influence on low latency networks because of the limited buffer sizes in LAN

switches compared to the TCP maximum window size. In longer latency networks (WAN's), the drop policies have

a smaller impact if both the switch buffer sizes and the TCP windows are of the order of the bandwidth-delay prod-
uct of the network. Also, the TCP linear increase is much slower in WAN's than in LAN's because the WAN RTT's

are higher.
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6.6. Guaranteed frame rate

In this section, we present a brief description of the ATM Guaranteed Frame Rate (GFR) service category. This

service is expected to use FIFO queuing with buffer management and packet marking to provide minimum cell rate

guarantees on a per-connection basis. [GOYAL99] studies the perlormance of Differential FBA to provide mini-

mum cell rate guarantees to TCP/IP traffic over GFR for terrestrial and satellite networks. So far, no other studies

have been reported to our knowledge to assess the performance of GFR lbr satellite networks. This is a topic of fu-

ture study.

GFR has been recently proposed in the ATM Forum as an enhancement to the UBR service category. GFR will

provide a minimum rate guarantee to VC's at the frame level. The GFR service also allows for the lair usage of any

extra network bandwidth. GFR requires minimum signaling and connection management functions, and depends on

the network's ability to provide a minimum rate to each VC. GFR is likely to be used by

applications that can neither specify the traffic parameters needed for a VBR VC, nor have capability for ABR (for

rate-based feedback control). Current internetworking applications fall into this category, and are not designed to run

over QoS-based networks. These applications could benefit from a minimum rate guarantee by the network, along

with an opportunity to fairly use any additional bandwidth left over from higher priority connections. In the case of

LAN's connected by ATM backbones, network elements outside the ATM network could also benefit from GFR

guarantees. For example, IP routers separated by an ATM network could use GFR VC's to exchange control mes-

sages. Figure 12 illustrates such a case where the ATM cloud connects several LAN's and routers. ATM end sys-

tems may also establish GFR VC's tbr connections that can benefit from a minimum throughput guarantee.

LAN Router %

Cloud

GFR VC's

#_ Bridge

I
Router

Figure 12.--GFR in ATM connected LAN's.
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The original GFR proposals give the basic definition of the GFR service. GFR provides a minimum rate guar-

antee to the frames of a VC. The guarantee requires the specification of a maximum frame size (MFS) of the VC.

Eligible packets (or frames) are defined as those packets that are smaller than the maximum frame size, which arrive
at a rate of at most the minimum cell rate (MCR), and with the same CLP value in all their ceils. The network deliv-

ers eligible packets with low loss. If the user sends packets at a rate higher than the MCR, it should still receive at

least the minimum rate. The minimum rate is guaranteed to the untagged (CLP=0) frames of the connection. In

addition, a connection sending in excess of the minimum rate should receive a fair share of any unused network

capacity. The exact specification of the fair share has been left unspecified by the ATM Forum. The above discus-

sion captures the essence of the GFR service that is being specified by the ATM Forum and the ITU.

There are three basic design options that can be used by the network to provide the per-VC minimum rate guar-

antees tbr GFR--tagging, buffer management, and queuing:

• Tagging: Network-based tagging (or policing) can be used as a means of marking non-eligible packets before

they enter the network. This torm of tagging is usually performed when the connection enters the network. Fig-

ure 13 shows the role of network-based tagging in providing a minimum rate service in a network. Network-

based tagging on a per-VC level requires some per-VC state inlormation to be maintained by the network and

increases the complexity of the network element. Tagging can isolate conforming and non-eligible traffic of

each VC so that other rate enforcing mechanisms can use this inJbrmation to schedule the eligible traffic in

preference to non-eligible traffic. In a more general sense, policing can be used to discard non-contbrming

packets, thus allowing only conforming packets to enter the network.

• Buffer management: Buffer management is typically performed by a network element (like a switch or a

router) to control the number of packets entering its buffers. In a shared buffer environment, where multiple

VC's share common buffer space, per-VC buffer management can control the buffer occupancies of individual

VC's. Per-VC buffer management uses per-VC accounting to keep track of the buffer occupancies of each VC.

Figure 13 shows the role of buffer management in the connection path. Examples of per-VC buffer management

schemes are SD and FBA. Per-VC accounting introduces overhead, but without per-VC accounting it is difficult

to control the buffer occupancies of individual VC's (unless non-conforming packets are dropped at the en-

trance to the network by the policer). Note that per-VC buffer management uses a single FIFO queue for all the

VC's. This is different from per-VC queuing and scheduling discussed below.

• Scheduling: Figure 13 illustrates the position of scheduling in providing rate guarantees. While tagging and

buffcr management controls the entry of packets into a network element, queuing strategies determine how

packets are scheduled onto the next hop. FIFO queuing cannot isolate packets from various VC's at the egress

of the queue. As a result, in a FIFO queue, packets are scheduled in the order in which they enter the buffer.

Per-VC queuing maintains a separate queue for each VC in the buffer. A scheduling mechanism can select

between the queues at each scheduling time. However, scheduling adds the cost of per-VC queuing and the

service discipline. For a simple service like GFR, this additional cost may be undesirable.
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Figure 13.--Buffering, scheduling, and policing in the network.

Several proposals have been made ([BASAK97],[BONAV97]) to provide rate guarantees to TCP sources with

FIFO queuing in the network. The bursty nature of TCP traffic makes it difficult to provide per-VC rate guarantees

using FIFO queuing. Per-VC scheduling was recommended to provide rate guarantees to TCP connections. How-

ever, all these studies, were performed at high target network utilization: that is, most of the network buffers were

allocated to the GFR VC's. We show that rate guarantees are achievable with a FIFO buffer for low buffer

allocation.

All the previous studies have examined TCP traffic with a single TCP per VC. Per-VC buffer management for

such cases, reduces to per-TCP buffer management. However, routers that would use GFR VC's, would multiplex

many TCP connections over a single VC. For VC's with several aggregated TCP's, per-VC control is unaware of

each TCP in the VC. Moreover, aggregate TCP traffic characteristics and control requirements may be different

from those of single TCP streams. Minimum rate allocation to TCP traffic with FIFO buffers is presented in

[GOYAL99]

7. ABR Over Satellite

tn this section, we present an overview of the ABR service and its implementations on satellite networks. The

main focus of this section is to assess the compatibility of ABR source rules over satellite networks.

7.1. ABR service overview

ABR mechanisms allow the network to divide the available bandwidth fairly and efficiently among the active

traffic sources. In the ABR traffic management framework, the source end systems limit their data transmission to

rates allowed by the network. The network consists of switches that use their current load inlbrmation to calculate

the allowable rates for the sources. These rates are sent to the sources as feedback via resource management (RM)

cells. The ABR traffic management model is a rate-based end-to-end closed-loop model. There are three ways for

switches to give feedback to the sources. First, each cell header contains a bit called Explicit Forward Congestion
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Indication (EFCI) that can be set by a congested switch. Such switches are called binary or EFCI switches. Second,

RM cells have two bits in their payload, called the Congestion Indication (CI) bit and the No Increase (NI) bit, that

can be set by congested switches. Switches that use only this mechanism are called relative rate marking switches.

Third, the RM cells also have another field in their payload called explicit rate (ER) that can be reduced by con-

gested switches to any desired value. Such switches are called Explicit Rate switches. RM cells are generated by the

sources and travel along the data path to the destination end systems. The destinations simply return the RM cells to

the sources. Explicit rate switches normally wait for the arrival of an RM cell to give feedback to a source. However,

under extreme congestion, they are allowed to generate an RM cell and send it immediately to the source. This

optional mechanism is called backward explicit congestion notification (BECN).

At the time of connection setup, ABR sources negotiate several operating parameters with the network. The first

among these is the peak cell rate (PCR). This is the maximum rate at which the source will be allowed to transmit on

this virtual circuit (VC). The source can also request a minimum cell rate (MCR) which is the guaranteed minimum
rate. The network has to reserve this bandwidth for the VC. During the data transmission stage, the rate at which a

source is allowed to send at any particular instant is called the allowed cell rate (ACR). The ACR is dynamically

changed between MCR and PCR. At the beginning of the connection, and after long idle intervals, ACR is set to

initial cell rate (ICR). A complete list of parameters used in the ABR mechanism is given in [TM4096]. ABR

switches can use the virtual source/virtual destination (VS/VD) feature to segment the ABR control loop into

smaller loops. In a VS/VD network, a switch can additionally behave both as a (virtual) destination end system and

as a (virtual) source end system. As a destination end system, it turns around the RM cells to the sources from one

segment. As a source end system, it generates RM cells for the next segment. This feature can allow feedback from

nearby switches to reach sources faster and achieve hop-by-hop control.

Traffic Management Specifications V 4.0, released in June 1996, specifies various parameters tor ABR connec-

tions and the rules to be followed by ABR sources and destinations [TM4096]. An elaborate discussion of ABR

parameters, source end system rules and destination end system rules is available in [JAIN96]. Among the various

rules specified for ABR sources, rules 5 and 6 can significantly degrade ABR perlormance over satellite links if

parameters used there do not have appropriate values.

7.2. ABR source rules

ABR end systems must lbllow a set of rules while sending out data and RM cells into the network. Of the

source rules, rules 5 and 6 have the most impact on satellite ATM networks.

7.2.1. ABR source rule 5 over satellite.--Rule 5 states that "Before sending a lorward in-rate RM cell. if

ACR > ICR and the time T that has elapsed since the last in-rate forward RM cell was sent is greater than ADTF,
then ACR shall be reduced to ICR."

Hcre, ACR is the Allowed Cell Rate and ICR is the Initial Cell Rate of the source. Hence, ADTF (ACR

Decrease Time Factor) is the maximum time allowed between consecutive forward RM cells before the ACR is
rcduced to ICR.

The purpose of rule 5 is to solve the problem of ACR Retention. If a source sends an RM cell when the network

is not heavily loaded, the source may be granted a very high ACR. The source can then retain that ACR and use it

when the network is highly loaded. This may cause switch buffers to overflow. Rule 5 provides a simple timeout

solution to this problem with ADTF as the timeout value--ACR reduces to 1CR whenever the time interval between
two consecutive forward RM cells exceeds ADTF [JAIN96].

In the case of long delay satellite links, if the !CR is low, starting from ICR and reaching an ACR where the link

bandwidth is properly utilized may take a long time. Hence. it is imperative that rule 5 does not get triggered unnec-
essarily, either because traffic is bursty or the data rate is low. In either case. reaching an optimum ACR from a low

ICR may take a long time, during which link utilization will be poor. Hence, triggering of rule 5 should be delayed

by keeping a sufficiently high value of ADTF. As a result, the inter-FRM cell time interval lies well below the

ADTF value, and the source does not return to ICR. Allowed values for ADTF range between 0.01 to 10.23 sec with

a granularity of 10 ms. This range provides sufficient flexibility in choosing a good value of ADTF for satellite
links.
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7.2.2. ABR source rule 6 on ABR over satellite.--Consider the following scenarios:

• There is congestion in the network and the BRM cells carrying low ER are stuck in the switch queues.

Consequently, sources continue to send cells into the network at their current high ACR, causing further

congestion.

• A link is broken and the source is not getting any feedback from the network. With no feedback available,

the source continues to pump cells into the network at its current high ACR. All of these cells are lost.

The scenarios presented above suggest that the source should decrease its ACR as a preventive measure if it

does not get timely feedback from the network. Source Rule 6 1or ABR connection_ requires the sources to do

exactly this. This rule states that "Before sending an in-rate forward RM-cell, and after following source rule 5, if at
least CRM in-rate forward RM-cells have been sent since the last backward RM-cell with BN = 0 was received, then

ACR shall be reduced by at least ACRxCDF, unless that reduction would result in a rate below MCR, in which case
ACR shall be set to MCR."

Here. backward RM-cell with BN = 0 means an RM cell that was generated by the source and has been turned
around

ACR = Max(MCR < ACR- ACRx CDF)

by the destination. CRM is the missing RM-cell count that limits the number of forward RM-cells that may be sent

in thc absence of received backward RM-cells. MCR is the Minimum Cell Rate. Finally, CDF denotes the Cutoff

Decrease Factor and controls the decrease in ACR associated with CRM. CDF can have zero or any power of 2 in

the range 1/64 to 1 as its value.

Suppose T was the last time when source received a BRM cell from the network as feedback and since then

source has sent CRMxNrm cells. Here, Nrm is the maximum number of cells a source may send for each forward

RM cell. Then rule 6 implies that ACR of the source will bc reduced by ACRxCDF immediately and lor every fur-

ther Nrm cells source sends before receiving a new BRM cell.

This exponential decrease in ACR for every Nrm cells sent, leads to an almost "'free fall" in ACR, as shown in

figure 14 and table IV.

ACI_

MCI_

Time

Figure 14.ISudden drop in ACR with triggering of source rule 6.
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TABLE IV.--EXPONENTIAL DECREASE IN ACR
WITH TRIGGERING OF SOURCE RULE 6

ACR Number of cells sent since last

ACR,_a(I - CDF)

ACRola(l - CDF) z

ACR,_j(I - CDF) k

receiving feedback

CRMxNrm

(CRM+I)xNrm

](CRM + k)xNrm

This tree fall in ACR continues until a BRM cell is received or ACR reduces to MCR.

Rule 6, once triggered, reduces ACR to MCR quickly unless a BRM is received. Value of CDF (a power of 2

between 1/64 and 1) has little effect in preventing this free fall in ACR. However, rule 6 can be effectively disabled

by having a CDF value of zero.

It is clear from the discussion above that the trigger point of rule 6; that is, the value of the product CRMxNrm,

limits the number of cells from a source that can be "in flight" on a link in the absence of network feedback. Such a

situation where no network feedback is available arises during initial startup or when BRM cells are unable to reach

the source due to congestion. In the case of satellite links with long feedback delays, source rule 6 can cause severe

reduction in link utilization. This is explained in the next section.

Suppose the satellite link bandwidth (or capacity) is W cells/see. Now, for efficient link utilization, the com-

bined input to satellite link from all sources should be allowed to reach close to W cells/see. If the limit on the value

of product CRM×Nrm is not sufficiently high, then it is possible that, on long feedback delay satellite links, a source

sends CRM×Nrm cells after the receipt of last BRM cell and before the arrival of the next. In such a situation, rule 6

will be triggered for that source and its ACR will get drastically reduced. This situation can occur with other sources

also. Thus. it is very much possible that the combined input to the satellite link from all the sources will never be

able to reach the optimum value of W cells/see.

Hence, rule 6 may cause inefficient utilization of satellite links if the value of CRM×Nrm is not large enough.

Required values of CRM for efficient GEO link utilization

We have seen that frequent triggering of rule 6 on satellite links will lead to poor utilization of the link. Utiliza-

tion can be increased by setting CDF to zero and disabling rule 6. However, this will make the network susceptible

to severe congestion. The solution lies not in disabling rule 6, but in sufficiently delaying its triggering so that effi-

cient link utilization is not compromised.

Efficient link utilization means that a sufficient number of cells are "in flight" so that the link is tully "filled:'"

that is, the number of cells in flight is equal to the RTT multiplied by the link capacity.

The product CRMxNrm specifies the number of cells an ABR source can send at its current ACR starting from

the time when it last received a BRM cell. This product should be sufliciently high so that even a single source is

able to fill the satellite pipe fully before rule 6 is triggered. This means that the CRMxNrm value should be at least

equal to RTT multiplied by link capacity. In other words,

CRM >
RTT x Link Bandwidth

Nrnl

The value of Nrm can be any power of 2 in the range 2 to 256. Increasing the Nrm value reduces the sensitivity

of the source to network conditions, especially at low rates. Hence, Nrm value is generally kept equal to 32, its

default value. For a GEO satellite link (550 ms R'Iq') with a capacity of 155 Mbps (=365 cells per ms), CRM >

550x365/32 = 6273 (=6k = 6144),

Before August 1995, TM Specification had allocated 8 bits for CRM thus limiting it to a maximum value of

256. Signaling a CRM greater than 6144 requires at least 13 bits for encoding. For a capacity of 622 Mbps, CRM

should be greater than or equal to 24576 which requires at least 15 bits for encoding. For two 622 Mbps satellite

hops, CRM should be greater than or equal to 49152 (24576x2) which requires at least 16 bits for encoding.

As a result, the TM Specification V 4.0 has modifications that allow effectively 19 bits for CRM value. In TM

Specification V 4.0, CRM is an internal parameter that is derived from a negotiated parameter called Transient
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Buffer Exposure (TBE). TBE determines the number of cells that a source can transmit be|ore rule 6 is triggered:

that is, TBE essentially equals the product CRM×Nrm. Thus. the relationship between CRM and TBE is given by,
CRM = ]-TBE/Nrm]

TBE gets its name from the fact that it determines the exposure of the switch to sudden traffic transients. It

determines the number of cells that may be received at the switch during initial startup or after any long idle period

of time. Hence this parameter is negotiated with the network during connection setup based on buffer availability in

the network switches. TM Specification V 4.0 sets the size of the TBE parameter to 24 bits. Since Nrm is normally
32.24-bit TBE allows a 19-bit CRM. which is sufficient for most situations. [FAHMY96] describes the work that

led to setting of TBE size to 24 bits in TM Specification V 4.0.

7.3. TCP over ABR

[KALYAN97b] provides a comprehensive study of TCP performance over the ABR service category. In the

tbllowing subsections we present the key issues in TCP over ABR, and highlight their relevance to long delay paths.

Most of the discussion assumes that the switches implement a switch algorithm like ERICA or ERICA+

[KALYAN98b].

7.3.1. Nature of TCP traffic at the ATM layer.--TCP is controlled first by the '+slow start" procedure before

it appears as traffic to the ATM layer. Suppose we have a large file transfer running on top of TCP. When the file

transfer begins, TCP sets its congestion window (CWND) to one. The congestion window increases exponentially

with time. Specifically, the window increases by one for every acknowledgment received. Over any RTT, the con-

gestion window doubles in size. From the switch's point of view, there are two packets input in the next cycle for

every packet transmitted in the current cycle (a cycle at a bottleneck is defined as the largest RTT of any VC going

through the bottleneck). In other words, the load (measured over a cycle) at most doubles every cycle. In other

words, initially, the TCP load increases exponentially.
Although the application on top of TCP is a persistent application (file transfer), the TCP traffic as seen at the

ATM layer is bursty (i.e.. has active and idle periods). Initially, there is a short active period (the first packet is sent)

followed by a long idlc period (nearly one round-trip time, waiting for an acknowledgment). The length of the active
period doubles every round-trip time and the idle period reduces correspondingly. Finally, the active period occupies

the entire round-trip time and there is no idle period. After this point, the TCP traffic appears as an infinite (or per-
sistent) traffic stream at the ATM layer. Note that the total TCP load still keeps increasing unless the sources are

controlled. This is because, tor every packet transmitted, some TCP source window increases by one, which results
in the transmission of two packets in the next cycle. However, since the total number of packets transmitted in a

cycle is limited by the delay-bandwidth product, the TCP window increases linearly after the bottleneck is fully
loaded. Note that the maximum load, assuming sufficient bottleneck capacity, is the sum of all the TCP receiver
windows, each sent at link rate.

When sufficient load is not experienced at the ABR switches, the switch algorithms typically allocate high rates

to the sources. This is likely when a new TCP connection starts sending data. The file transfer data is bottlenecked
by the TCP congestion window size and not by the ABR source rate. In this state, we say that the TCP sources are
window-limited.

The TCP active periods double every RTT and eventually load the switches and appear as infinite traffic at the
ATM layer. The switches now give feedback, asking sources to reduce their rates. The TCP congestion window is

now large and is increasing. Hence, it will send data at a rate greater than the source's sending rate. The file transfer
data is bottlenecked by the ABR source rate and not by the TCP congestion window size. In this state, we say that
the TCP sources are rate-limited. Observe that UBR cannot rate-limit TCP sources and would need to buffer the

entire TCP load inside the network. The minimum number of RTT's required to reach rate-limited operation

decreases as the logarithm of the number of sources. In other words, the more the number of sources, the faster they

all reach rate-limited operation.
The ABR queues at the switches start increasing when the TCP idle times are not sufficient to clear the queues

built up during the TCP active times. The queues may increase until the ABR source rates converge to optimum

values. Once the TCP sources are rate-limited and the rates converge to optimum values, the lengths of the ABR

queues at the switch will start decreasing. The queues now move over to the source end-system (outside the ATM
network).

NASA/TM-- 1999-209196 31



7.3.2,TCP performance over ABR.-_Cell loss will occur in the network if the ATM switches do not have
sufficient buffers to accommodate this queue buildup. Clearly TCP achieves maximum throughput over ABR when

there is no cell loss. When cell loss does occur, the cell loss ratio (CLR) metric, which quantifies cell loss, is a poor
indicator of loss in TCP throughput. This is because TCP loses time (through timeouts) rather than cells (cell loss).

If the ABR rates do not converge to optimum values before the cell loss occurs, the effect of the switch congestion
scheme may be dominated by factors such as the TCP retransmission timer granularity. Intelligent cell drop policies

at the switches can help to significantly improve the throughput.

TCP throughput loss over ABR can be avoided by provisioning sufficient switch buffers. It has been shown that
the buffer requirement lbr TCP over ABR is bounded and small [KALYAN97b]. In particular, the buffer require-
ment for zero TCP loss over ABR can be bounded by a small constant multiple of the product of the RTT and

bandwidth of the connection. However, note that even after ABR sources converge to optimum rates, the TCP con-

gestion window can grow until it reaches its maximum (negotiated) value. In such cases, TCP overloads the ABR
source and the queues build up at the source end system. If the source queues overflow cell loss will occur, and per-

formance will degrade. In this case, the cell loss occurs outside the ABR network.
The ABR service provides flow control at the ATM level itself. When there is a steady flow of RM cells in the

forward and reverse directions, there is a steady flow of feedback from the network. In this state, we say that the
ABR control loop has been established and the source rates are primarily controlled by the network feedback

(closed-loop control). The network feedback is effective after a time delay. The time delay required for the new
feedback to take effect is the sum of the time taken tor an RM cell to reach the source from the switch and the time

for a cell (sent at the new rate) to reach the switch from the source. This time delay is called the "feedback delay."
When the source transmits data after an idle period, there is no reliable feedback from the network. For one RTT

(time taken by a cell to travel from the source to the destination and back), the source rates are primarily controlled
by the ABR source end system rules (open-loop control). The open-loop control is replaced by the closed-loop con-

trol once the control loop is established. When the traffic on ABR is "bursty;" that is, the traffic consists of busy and
idle periods, open-loop control may be exercised at the beginning of every active period (burst). Hence, the source

rules assume considerable importance in ABR flow control.
7.3.3. Buffer requirements for TCP over ABR.--Most studies for buffer requirements for TCP over ABR

over satellite have considered Explicit Rate schemes. In particular, ERICA and ERICA+ have been extensively
studied. Empirical and analytical studies have shown that the buffer requirement for TCP over ABR for zero loss
transmission is:

Buffer < a x RTT + b x Averaging Interval Lenth + c x Feedback delay x Link bandwidth

lbr low values of the coefficients a, b, c, and d. This requirement is heavily dependent on the switch algorithm. With

the ERICA+ algorithm, typical conservative values of the coefficients are a = 3, b = 1, and c = 1.
The lormula is a linear relation on three key factors:

• Round trip time (RTT): Twice the delay through the ABR network or segment (delimited by VS/VD
switch(es)).

• Averaging Interval Length: A quantity that captures the measurement aspects of a switch congestion

control algorithm. Typical measured quantities are ABR capacity, average queue length, ABR input rate,
number of active sources, and VC's rate.

• Feedback delay: Twice the delay from the bottleneck to the ABR source (or virtual source). Feedback
delay is the minimum time for switch feedback to be effective.

Note that the formula does not depend upon the number of TCP sources. This fact implies that ABR can support

TCP (data) applications in a scalable fashion. The buffer requirement is also an indication of the maximum queuing
delay through the network. Note that this is a worst case requirement and the average delay is much smaller due the

congestion avoidance mechanisms at the ATM layer. As a result, ABR is better suited for scalable support of inter-
active applications that involve large data transfers (like Web-based downloading, etc.).

The above formula assumes that the traffic using TCP is persistent (like a large file transfer). Note that it is pos-

sible for TCP to keep its window open for a while and not send data. In the worst case, if a number of TCP sources
keep increasing their TCP windows slowly (during underload), and then synchronize to send data, the queue seen at

the switch is the sum of the TCP windows [VAND98].

Variation in ABR demand and capacity affects the feedback given by the switch algorithm. If the switch algo-
rithm is highly sensitive to variation, the switch queues may never be bounded since, on the average, the rates are
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nevercontrolled.ThebufferrequirementaboveassumesthattheswitchalgorithmcantoleratevariationinABR
capacityanddemand.

Also,intheaboveformula,it isassumedthattheproductofthenumberofactiveTCPsourcestimesthemaxi-
mumsegmentsize(MSS)issmallcomparedtothebufferrequirementderived.Alsonotethatthebufferrequirement
istortheATMswitchesonly.Inotherwords,thequeuesarepushedbyABRtotheedgesofthenetwork,andthe
edgeroutersneedtouseothermechanismstomanagetheedgequeues,whichareoftheorderofUBRqueues.

Notealsothatundercertainextremeconditions(likelargeRTTofsatellitenetworks)someofthefactors(RTT,
feedbackdelay,averaginginterval)maydominateovertheothers(e.g.,thefeedbackdelayovertheRTTinsatellite
networks).AnotherscenarioisaLANwheretheaveragingintervaldominatesoverbothRTTandfeedbackdelay.
TheRTTforanABRsegment(delimitedbyVS/VDswitches)istwicethemaximumone-waydelaywithinthe
segment,andnottheend-to-enddelayofanyABRconnectionpassingthroughthesegment.Thesefactorsfurther
reducethebufferrequirementsinLANswitchesinterlacingtolargenetworks,orLANswitchesthathaveconnec-
tionspassingthroughsegmentedWAN's.

Effect of two-way traffic: The above analysis has assumed undirectional TCP traffic (typical of file-transfer

applications)• It has been noted that bidirectional traffic complicated TCP dynamics considerably leading to more

bursty behavior by TCP. This is due to the "Ack Compression" phenomenon.
Effect of VBR background: The presence of higher priority background traffic implies that the ABR capacity

is variable. There are two implications of the variation in capacity: ( 1) the effect on the rate of TCP acknowledg-
ments and the window growth, and (2) the effect on the switch rate allocation algorithm. The VBR ON-OFF times,

the feedback delays, and a switch scheme sensitive to variation in ABR load and capacity may combine to create
worst case conditions where the ABR queues diverge. However, a scheme that combines accurate measurement

with efficient measurement techniques can counter the effects of ON-OFF as well as self-similar VBR background
traffic.

In the presence of two-way VBR traffic, a buffer of at least 5×RT[" is required. Note that the effect of the aver-
aging interval parameter dominates in LAN's (because it is much larger than RTT or feedback delay). Similarly, the

effect of the feedback delay dominates in satellite networks because it can be much smaller than RTT.
Though the maximum ABR network queues are small, the queues at the sources are high. Specifically, the

maximum sum of the queues in the source and the switches is equal to the sum of the TCP window sizes of all TCP
connections. That is, the buffering requirement for ABR becomes the same as that for UBR if we consider the

source queues. This observation is true only in certain ABR networks. If the ATM ABR network is an end-to-end
network, the source end systems can directly flow control the TCP sources. In such a case, the TCP will do a block-

ing send: that is, the data will go out of the TCP machine's local disk to the ABR source's buffers only when there is
sufficient space in the buffers. The ABR service may also be offered at the backbone networks, i.e., between two
touters. In these cases, the ABR source cannot directly flow control the TCP sources. The ABR flow control moves

the queues from the network to the sources. If the queues overflow at the source, TCP throughput will degrade.

Bursty traffic: Note that the above results apply to the case of infinite traffic (like a large file transfer applica-
tion) on top of TCP. [VAND98] shows that bursty (idle/active) applications on TCP can potentially result in

unbounded queues. However, in practice, a well-designed ABR system can scale well to support a large number of
applications like bursty WWW sources running over TCP.

7.3.4. TCP over ABR: switch design issues.--Some of problems observed by common switch algorithms are
discussed below:

Out-of-phase effect: No load or sources are seen in the tbrward direction while sources and RM cells are
seen in the reverse direction.

Clustering effect: The cells from TCP connections typically come in clusters. Hence, the activity of multi-

ple connections is difficult to sense over small averaging intervals, though the corresponding load may be

high.
Variation in load: Even an infinite traffic source running on top of TCP looks like a bursty source at the

ATM layer. When a number of such sources aggregate, the load experienced at the switch can be highly
variant. In such cases, it is possible to have a long period of underload, followed by a sudden burst, which

builds queues. As a result the maximum queue may be large even though the utilization/throughput is low.
Schemes like ERICA can track the variation in load and filter it, because they use the average load as a

metric. However, several schemes use the queue length metric exclusively. Queue length has a higher
variation than the average load, and it also varies depending upon the available capacity. Further, a queue

length of zero yields little information about the utilization of the link. It has been argued that schemes that

look at only the queue length are less susceptible to errors than schemes that use several metrics (like input
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rate,MACR,numberofactivesources,etc).But,theUseofseveralindependentmetricsgivesmorecom-
pleteinformationaboutthesystem[JAIN91],andvariationreductioncanbedonebyusingsimpleaverag-
ingtechniques.
Variationincapacity:TheABRcapacitydependsuponthelinkbandwidth,andthebandwidthusageof
thehigherpriorityclasseslikeCBRandVBR,andcanexhibitvariationaccordingly.TheeffectofABR
capacityvariation,whencombinedwiththelatencyingivingfeedbacktosources,resultsinanalternating
seriesof highandlowrateallocationsbytheswitch.Unboundedqueuingdelayscouldresultif theaverage
totalallocationexceedstheaveragecapacity

TheseeffectsreduceasthenetworkpathgetscompletelyfilledbyTCPtraffic,andtheABRclosedloopcontrol
becomeseffective.Theswitchschemethencontrolstherateofthesources.Notethataveragingtechniquescanbe
usedspecificallytocountersuchconditions,i.e.,reducetheerrorinmeasurementandhandleboundarycases.The
residualerrorevenafterthesemodificationsmanifestsasqueuesatthebottleneck.

7.3.5. TCP performance over backbone ATM-ABR networks.--The ATM source buffer requirement can be

estimated by examining the maximum queues at the source when TCP runs over ABR. The performance when suffi-

cient buffers are not provided has also been studied.
ABR sources require one receiver window's worth of buffering per VC to avoid cell loss. The total buffering

required for N sources is the sum of the N receiver windows. Note that this is the same as the switch buffer require-
ment tor UBR. In other words, the ABR and UBR services differ in whether the sum of the receiver windows' worth

of queues is seen at the source or at the switch.
If the ABR service is used end-to-end, then the TCP source and destination are directly connected to the ATM

network. The source can directly flow control the TCP source. As a result, the TCP data stays in the disk and is not

queued in the end-system buffers. In such cases, the end-system need not allocate large buffers. In these end-to-end
configurations, ABR allows TCP to scale well.

However, if the ABR service is used on a backbone ATM network (this would be typical of most initial
deployments of ABR), the end-systems are edge routers that are not directly connected to TCP sources. These edge

routers may not be able to flow control the TCP sources except by dropping cells. To avoid cell loss, these routers
nced to provide one receiver window's worth of buffering per TCP connection. The buffering is independent of

whether the TCP connections are multiplexed over a smaller number of VC's or they have a VC per connection. For
UBR, these buffers need to be provided inside the ATM network, while for ABR they need to be provided at the

edge router. If there are insufficient buffers, cell loss occurs and TCP performance degrades.
The fact that the ABR service pushes the congestion to the edges of the ATM network while UBR service

pushes it inside is an important benefit of ABR for service providers.
Key results in TCP performance over ABR are listed below:

* TCP achieves maximum throughput when there are enough buffers at the switches.

• When maximum throughput is achieved the TCP sources are rate-limited by ABR rather than window-
limited by TCP.

• When the number of buffers is smaller, there can be a large reduction in throughput even though CLR is
very small.

• The reduction in throughput is due to loss of time during timeouts (large timer granularity), and transmis-

sion of duplicate packets that are dropped at the destination.

• When throughput is reduced, the TCP sources are window-limited by TCP rather than rate-limited by ABR.

• Switch buffers should not be dimensioned based on the ABR Source parameter TBE. Dimensioning should

be based upon the performance of the switch algorithm, and the RTT.

• When ABR capacity is varied, CLR exhibits high variance and is not related to TCP throughput. In general,

CLR is not a good indicator of TCP level perlbrmance.

• Larger buffers increase TCP throughput.

• Larger number of window-limited sources increases TCP throughput. This is because the sum of the win-
dows is larger when there are more sources.

• Even when the buffers are small, dropping of EOM cells should be avoided. This avoids merging of pack-
ets at the destination AAL5 and improves fairness. When sufficient buffers are provided for ABR, the net-

work drop policy is important mainly at the edge of the ATM network.
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7.4. Virtual source/virtual destination

In long latency satellite configurations, the feedback delay is the dominant factor (over RTT) in determining the
maximum queue length. A feedback delay of I0 ms corresponds to about 3670 cells of queue for TCP over ERICA,

while a feedback delay 550 ms corresponds to 201850 cells. This indicates that satellite switches need to provide at
least one feedback delay worth of buffering to avoid loss on these high delay paths. A point to consider is that these

large queues should not be seen in downstream workgroup or WAN switches, because they will not provide so much

buffering. Satellite switches can isolate downstream switches from such large queues by implementing the virtual
source/virtual destination (VS/VD) option.

[GOYAL98a] have examined some basic issues in designing VS/VD feedback control mechanisms. VS/VD can
effectively isolate nodes in different VS/VD loops. As a result, the buffer requirements of a node are bounded by the

feedback delay-bandwidth product of the upstream VS/VD loop. However, improper design of VS/VD rate alloca-
tion schemes can result in an unstable condition where the switch queues do not drain.

The paper also presents a per-VC rate allocation mechanism tk_r VS/VD switches based on ERICA+. This
scheme retains the basic properties of ERICA+ (maximum-minimum fairness, high link utilization, and controlled

queues), and isolates VS/VD control loops thus limiting the buffer requirements in each loop. The scheme has been

tested ['or infinite ABR and persistent TCP sources.
VS/VD, when implemented correctly, helps in reducing the buffer requirements of terrestrial switches that are

connected to satellite gateways. Without VS/VD, terrestrial switches that are a bottleneck might have to buffer cells

of up to the feedback delay-bandwidth product of the entire control loop (including the satellite hop). With a VS/VD

loop between the satellite and the terrestrial switch, the queue accumulation due to the satellite feedback delay is
confined to the satellite switch. The terrestrial switch only buffers cells that are accumulated due to the feedback

delay of the terrestrial link to the satellite switch.

8. Summary: TCP/IP Over Satellite ATM Networks

This document describes the traffic management issues for transporting TCP/IP traffic over satellite ATM net-
works. The document overviews the architectural, QoS and delay characteristics of satellite ATM networks. The

various options for transporting TCP data over ATM are considered for satellite networks. The document recom-
mends that both TCP end system policies as well as ATM enhancements must be implemented for the efficient

transport of TCP over satellite ATM. The various ATM options are

• UBR with intelligent buffer management

• UBR with guaranteed rate
• ABR with network feedback

• ABR with virtual source/virtual dcstination (VS/VD)

In addition, TCP provides several congestion control mechanisms including

• Vanilla TCP with slow start and congestion avoidance

• TCP Reno with fast retransmit and recovery
• TCP New Reno

• TCP with selective acknowledgments (SACK)

It has been shown that vanilla TCP over the UBR service category achieves low throughput and high unfairness

over satellite networks. This is because during packet loss, TCP loses time waiting for its coarse granularity re-
transmission timeout. In the presence of bursty packet losses, fast retransmit and recovery (FRR) (without SACK)

further hurts TCP performance over UBR for long delay bandwidth product networks.
Frame level discard policies such as EPD improve the throughput significantly over cell-level discard policies.

However, the fairness is not guaranteed unless intelligent buffer management using per-VC accounting is used.

Throughput increases further with more aggressive New Reno and SACK. SACK gives the best performance in
terms of throughput. It has been found that lbr long delay paths, the throughput improvement due to SACK is more

than that from discard policies and buffer management. Using guaranteed rates (GR or GFR) helps in the presence

of a high load of higher priority traffic such as Constant Bit Rate (CBR) or Variable Bit Rate (VBR) traffic.
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ForTCPoverABR,virtualsource/virtualdestination(VS/VD)canbeused to isolate long-delay segments from

terrestrial segments. This helps in efficiently sizing buffers in routers and ATM switches. As a result, terrestrial

switches only need to have buffers proportional to the bandwidth-delay products of the terrestrial segment of the
TCP path. Switches connected to the satellite VS/VD loops must have buffers proportional to the satellite delay-

bandwidth products.
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